%

Verilog-AMS

Language Reference Manual

Analog & Mixed-Signal Extensions
to
Verilog HDL

Version 1.4
Cleanup Committee Working Draft

July 13, 1999

Open Verilog International

Copyrighf@ 1996-1999 by Open Verilog International, Inc. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means --
- graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems --- without the prior written approval of Open Verilog International.

Additional copies of this manual may be purchased by contacting Open Verilog International at the address
shown below.

Notices

The information contained in this draft manual represents the definition of the Verilog-AMS hardware descrip-
tion language as proposed by OVI (Analog and Mixed-Signal TSC) as of July 1999. Open Verilog International
makes no warranties whatsoever with respect to the completeness, accuracy, or applicability of the information
in this draft manual to a user’s requirements. This language is not yet fully defined and is subject to change. It is
suitable for learning how to do analog and mixed-signal modeling and as a vehicle for providing feedback to the
standards committee. Verilog-AMS should not be used for production design and development.

Open Verilog International reserves the right to make changes to the Verilog-AMS hardware description lan-
guage and this manual at any time without notice.

Open Verilog International does not endorse any particular simulator or other CAE tool that is based on the
Verilog-AMS hardware description language.

Suggestions for improvements to the Verilog hardware description language and/or to this manual are welcome.
They should be sent to the address below.

Information about Open Verilog International and membership enrollment can be obtained by inquiring at the
address below.

Published as: Verilog-AMS Language Reference Manual
Version 1.4, July 1999.

Published by: Open Verilog International
15466 Los Gatos Blvd., #109071
Los Gatos, CA 95032
Phone: (408) 358-9510
Fax: (408) 358-3910

Printed in the United States of America.

Verilog® is a registered trademark of Cadence Design Systems, Inc.

The following people contributed to the creation, editing, and review of this document.

Ramana Aisola
Graham Bell
William Bell
Kevin Cameron
Ed Chang
Raphael Dorado
John Downey
Dan FitzPatrick
Vassilios Gerousis
lan Getreu

Kim Hailey
Steve Hamm
Graham Helwig
William Hobson
Ken Kundert
Oskar Leuthold
S. Peter Liebmann
Ira Miller

Tom Reeder
Steffen Rochel
Jon Sanders
James Spoto
Richard Trihy
Yatin Trivedi
Frank Weiler
Alex Zamfirescu

Amir Zarkesh

Motorola
Viewlogic
Veribest
Consultant
Consultant
Apteq
Viewlogic
Apteq
Motorola
Analogy
Consultant
Motorola
Motorola
Cadence
Cadence
GEC Plessy
Antrim
Motorola
Viewlogic
Simplex
Cadence
Rockwell

Cadence

Seva Technologies

Avant!

Veribest

Transcendent

aisola@analog-dse.sps.mot.com
gbell@viewlogic.com

wrbell@veribest.com

edcheng@best.com
raf@apteq.com
jdowney@viewlogic.com
dkf@apteq.com
gerousis@udslaz.sps.mot.com
iang@analogy.com
kim@santolina.com
hamm@adttx.sps.mot.com
ghelwig@asc.corp.mot.com
wmh@cadence.com
kundert@cadence.com
leuthold@sv.gpsemi.com
SPL@antrim.com
rx340@email.sps.mot.com
treeder@viewlogic.com
steffen@simplex.com
jons@cadence.com
james.spoto@rss.rockwell.com
trihy@cadence.com
trivedi@seva.com
frankw@avanticorp.com
a.zamfirescu@ieee.org

amir@tdes.com

Table of Contents

1 Verilog-AMS Overview
1.1 Overview
1.2 Mixed-signal language features
1.3 Systems
1.3.1 Conservative systems
1.3.2 Kirchhoff's laws
1.3.3 Signal-flow systems
1.3.4 Mixed conservative/signal flow systems
1.3.5 Natures, disciplines and nodes
1.4 Conventions used in this document
1.5 Contents
2 Lexical Conventions.
2.1 Lexical tokens
2.2 White space
2.3 Comments
2.4 Operators
2.5 Numbers
2.5.1 Integer constants
2.5.2 Real constants
2.5.3 Scale factors for real constants
2.6 Identifiers, keywords, and system names
2.6.1 Escaped identifiers
2.6.2 Keywords
2.6.3 System tasks and functions
2.6.4 Compiler directives
3 Data Types
3.1 Integer and real datatypes
3.2 Parameters
3.2.1 Type Specification
3.2.2 Value Range Specification
3.2.3 Parameter Arrays
3.3 Genvars
3.4 Nodes
3.4.1 Natures
3.4.2 Disciplines
3.4.3 Node Declaration
3.4.4 Implicit Nodes
3.5 Default Discipline
Version 1.4 Verilog-AMS Language Reference Manual

3.5.1 Discipline Precedence
3.6 Node Compatibility
3.7 Branches
3.7.1 Branch Declaration
3.7.2 Accessing Node and Branch Signals
3.7.3 Accessing Attributes
3.8 Namespace
3.8.1 Nature and Discipline
3.8.2 Access Functions
3.8.3 Node
3.8.4 Branch

4 EXPressions

4.1 Operators
4.1.1 Operators with real operands
4.1.2 Binary operator precedence
4.1.3 Expression evaluation order
4.1.4 Arithmetic operators
4.1.5 Relational operators
4.1.6 Equality operators
4.1.7 Logical operators
4.1.8 Bit-wise operators
4.1.9 Shift operators
4.1.10 Conditional operator
4.1.11 Eventor
4.1.12 Concatenations

4.2 Built-In Mathematical Functions
4.2.1 Standard Mathematical Functions
4.2.2 Transcendental Functions
4.2.3 Error Handling

4.3 Signal Access Functions

4.4 Analog Operators
4.4.1 Restrictions on analog operators
4.4.2 Vector or Array Arguments to Analog Operators
4.4.3 Analog Operators and Equations
4.4.4 Time Derivative Operator
4.4.5 Time Integral Operator
4.4.6 Circular Integrator Operator
4.4.7 Delay Operator
4.4.8 Transition Filter
4.4.9 Slew Filter
4.4.10 Last_Crossing Function
4.4.11 Laplace Transform Filters
4.4.12 Z-Transform Filters

Version 1.4 Verilog-AMS Language Reference Manual

3-17
3-17
3-20

3-20
3-21
3-22
3-23
3-23

3-23
3-23
3-23

vi

4.5

4.6

5.1

5.2
5.3

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

Version 1.4

Signals

Analog Behavior

4.4.13 Limited Exponential
4.4.14 Constant vs Dynamic Arguments

Analysis Dependent Functions

4.5.1 Analysis

4.5.2 AC Stimulus

4.5.3 Noise

User defined functions

4.6.1 Defining an analog function

4.6.2 Returning a value from an analog function

4.6.3 Calling an analog function

Analog Signals

5.1.1 Access Functions

5.1.2 Probes and Sources

5.1.3 Examples

5.1.4 Port Branches

5.1.5 Switch Branches

5.1.6 Unassigned Sources

Signal Access for Vector Branches
Contribution statements

5.3.1 Branch Contribution Statements
5.3.2 Indirect Branch Assignments

Analog procedural block

Block statements

6.2.1 Block names

Procedural assignments

Conditional statement

6.4.1 Analog Conditional Statements
Case statement

6.5.1 Analog case statements

6.5.2 Constant expression in case statement
Looping statements

6.6.1 Repeat and while statements
6.6.2 For statements

Events

6.7.1 Event detection

6.7.2 Event OR operator

6.7.3 Event Triggered Statements
6.7.4 Global events

6.7.5 Monitored events

Announcing Discontinuity

Verilog-AMS Language Reference Manual

4-29
4-29
4-30
4-30
4-32
4-32
4-34
4-34
4-35
4-36

Vil

6.9

7 Mixed-Signal

7.1

7.2

7.3

7.4
7.5

7.6

7.7

8 Hierarchical Structures

8.1

8.2

Version 1.4

Time related functions
6.9.1 Bounding the time step

Fundamentals

7.1.1 Domains

7.1.2 Contexts

7.1.3 Analog and Digital Disciplines

7.1.4 Nets, Nodes, and Signals

Discipline Resolution and Connection Module Insertion
7.2.1 Discipline Resolution

7.2.2 Resolution of Discrete-time Disciplines
Behavioral Interaction

7.3.1 Synchronous

7.3.2 Asynchronous

Connect Statement and Connection Module Semantics
Automatic Insertion of Connection Modules

7.5.1 Connection Module Selection and Insertion
7.5.2 Internal Representation, Driver Receiver Segregation
7.5.3 Rules for Driver/Receiver Segregation and
Connection Module Selection and Insertion7-16

7.5.4 Instance Names for Auto-Inserted Instances
Back Annotation of Parasitics

7.6.1 Port Names for Verilog Built-in Primitives

Driver Access Functions

7.7.1 driver_update event

7.7.2 driver_count function

7.7.3 driver_active function

7.7.4 driver_local function

7.7.5 driver_state function

7.7.6 driver_strength function

7.7.7 driver_delay function

7.7.8 driver_next_state function

7.7.9 driver_next_strength function

Modules

8.1.1 Top-level modules

8.1.2 Module instantiation

Overriding module parameter values

8.2.1 Defparam statement

8.2.2 Module instance parameter value assignment by order
8.2.3 Module instance parameter value assignment by name
8.2.4 Parameter override precedence

Verilog-AMS Language Reference Manual

7-18
7-19
7-21
7-21
7-22

7-22
7-22
7-23
7-23
7-24
7-24
7-25
7-25

viii

8.3

8.4
8.5

22 Using VPI routines

8.2.5 Parameter dependence

Ports
8.3.1
8.3.2
8.3.3
8.34
8.3.5
8.3.6
8.3.7
8.3.8

Port association

Port declarations

Real valued ports

Connecting module ports by ordered list
Connecting module ports by name

Port connection rules

Inheriting Port Natures
Multi-disciplinary example

Hierarchical names
Scope rules

22.1 The VPI interface
22.1.1 VPI callbacks
22.1.2 VPl access to Verilog HDL objects and simulation objects

22.2

22.3

22.4

22.5

Version 1.4

22.1.3

Error handling

VPI object classifications
22.2.1 Accessing object relationships and properties

22.2.2

Delays and values

List of VPI routines by functional category
Key to object model diagrams

2241
2242
2243

Diagram key for objects and classes
Diagram key for accessing properties
Diagram key for traversing relationships

Object data model diagrams

2253
2254
22.5.5
22.5.6
22.5.7
22.5.8
22.5.9
22.5.10
22511
22512
22.5.13
22514
22.5.15
22.5.16
22.5.17
22.5.18
22.5.19

Nature, Discipline

Scope, task, function, 10 declaration
Ports

Nodes

Branches

Nets

Regs

Variables, named event

Memory

Parameter, specparam

Primitive, prim term

UDP

Module path, timing check, intermodule path
Task and function call

Continuous assignment

Simple expressions

Expressions

Verilog-AMS Language Reference Manual

X

24 V/PI routine definitions

24.1

24.2

24.3

24.4

24.5

24.6

24.7

24.8

24.9

24.10
24.11
24.12
24.13
24.14
24.15
24.16
24.17
24.18
24.19
24.20
24.21
24.22
24.23
24.24
24.25
24.26
24.27
24.28
24.29
24.30

24.31

Version 1.4

22.5.20 Contribs
22.5.21 Process, block, statement, event statement

22.5.22 Assignment, delay control, event control, repeat control

22.5.23 While, repeat, wait, for, forever
22.5.24 If, if-else, case

22.5.25 Assign statement, deassign, force, release, disable

22.5.26 Callback, time queue

vpi_chk_error()

vpi_compare_objects()

vpi_decl_deriv()

vpi_decl_discontinuity()

vpi_free_object()

vpi_get()

vpi_get_cb_info()
vpi_get_continuous_delta()
vpi_get_continuous_time()
vpi_get_delays()

vpi_get_str()

vpi_get_systf_info()

vpi_get_time()

vpi_get value()

vpi_get_vlog_info()

vpi_get_real()

vpi_handle()

vpi_handle_by_index()

vpi_handle_by name()
vpi_handle_multi()

vpi_iterate()

vpi_mcd_close()

vpi_mcd_name()

vpi_mcd_open()

vpi_mcd_printf()

vpi_printf()

vpi_put_delays()

vpi_put_deriv()

vpi_put_value()

vpi_register_chb()

24.30.1 Simulation-event-related callbacks
24.30.2 Simulation-time-related callbacks
24.30.3 Simulator action and feature related callbacks
vpi_register_ach()

24.31.1 Simulation-event-related callbacks

Verilog-AMS Language Reference Manual

24.31.2 SSimulator action and feature related callbacks

24.32 vpi_register_systf()

24.32.1 System task and function callbacks

24.32.2 Initializing VPI system task/function callbacks

24.33 vpi_remove_ch()
24.34 vpi_scan()

A Scheduling Semantics

Al

A.2

B Open Issues

C Analog Language Subset

Cl
C.2
C.3
C.4
C5
C.6
C.7
C.8
C.9
C.10
C.11
C.12
C.13
C.14
C.15
C.16
C.17

C.18

Version 1.4

Analog Simulation Cycle
A.1.1 Nodal Analysis

A.1.2 Transient Analysis
A.1.3 Convergence
Mixed-Signal Simualtion Cycle
A.2.1 Circuit Initialization
A.2.2 dc_init Flag

A.2.3 Transient Analysis & A/D Algorithm Synchronization

A.2.4 The Synchronization Loop

A.2.5 Assumptions about the Analog and Digital Algorithms

Verilog-AMS Overview
Lexical Tokens

Data Types

Expressions

Signals

Analog Behavior

Mixed Signal
Hierarchical Structure
Scheduling Sematics
Open Issues

Syntax

Keywords

System Tasks and Functions
Compiler Directives
Standard Definitions
SPICE Compatability
Changes from Verilog-A LRM v1.0
C.17.1 New functions
C.17.2 Changes
Obsolete Functionality
C.18.1 Forever statement

Verilog-AMS Language Reference Manual

24-46
24-48
24-48
24-49
24-51
24-52

Xi

C.18.2 NULL statement
C.18.3 Generate statement

D SYNtaX. . . e
D.1 Source text
D.2 Natures
D.3 Disciplines
D.4 Declarations
D.5 Module instantiation
D.6 Connect statements
D.7 Behavioral statements
D.8 Analog Expressions
D.9 Expressions
D.10 General
E Keywords.
F System Tasks and Functions
F.1 Environment parameter functions
F.2 $random function
F.3 $dist_ functions
F.4 Simulation control system tasks
F.4.1 $finish
F.4.2 $stop
F.5 File operation tasks
F.5.1 $fopen
F.5.2 $fclose
F.6 Displaying results
F.6.1 Escape sequences for special characters
F.6.2 Format specifications
F.6.3 Hierarchical name format
F.6.4 String format
F.7 Others - from lan’s writeup
F.7.1 System tasks and functions
F.7.2 Display tasks
F.7.3 File I/O tasks
F.7.4 Timescale tasks
F.7.5 Simulation control tasks
F.7.6 Timing check tasks
F.7.7 PLA modeling tasks
F.7.8 Stochastic analysis tasks
F.7.9 Simulation time functions
F.7.10 Conversion functions for reals
Version 1.4 Verilog-AMS Language Reference Manual

Xii

F.7.11 Probabilistic distribution functions

F.7.12 Environment Parameters (from 4.2.3 of A/IMS LRM)

G Compiler Directives
G.1 “default_discipline
G.2 ‘timescale
G.3 “default_transition
G.4 “define and "undef
G.4.1 ‘“define
G.4.2 “undef
G.5 ifdef, "else, "endif
G.6 include
G.7 resetall
H Standard Definitions
I SPICE Compatibility.
1.1 Introduction
[.1.1 Scope of Compatibility
[.1.2 Degree of Incompatibility
1.2 Accessing Spice Objects from Verilog
[.2.1 Case Sensitivity
1.2.2 Examples
1.3 Preferred Primitive, Parameter, and Port Names
1.3.1 Independent Sources
1.3.2 Unsupported Components
1.4 Other Issues
1.4.1 Multiplicity Factor on Subcircuits
1.4.2 Binning and Libraries
J Glossary
Version 1.4 Verilog-AMS Language Reference Manual

Xifi

Version 1.4 Verilog-AMS Language Reference Manual Xiv

Overview Verilog-AMS Overview

Section 1
Verilog-AMS Overview

1.1 Overview

This Verilog-AMS Hardware Description Language (HDL) language reference manual
defines a behavioral language for analog and mixed-signal systems. Verilog-AMS HDL
is derived from the IEEE 1364 Verilog HDL specification. This document is intended to
cover the definition and semantics of Verilog-AMS HDL as proposed by Open Verilog
International (OVI).

The figure below shows the components and architecture of the Verilog-AMS HDL. The
Verilog-AMS HDL consists of the complete IEEE 1364-1995 Verilog HDL
specification (noted as Verilog-D in the figure), an analog equivalent for describing
analog systems (noted as Verilog-A), and extensions to both for specifying the full
Verilog AMS HDL (noted as MS Extensions).

Verilog-AM

Verilog-D
1364- 19955__:

Verilog-A
OVI-96

Figure 1-1: Verilog-AMS Architecture

The intent of Verilog-AMS HDL is to let designers of analog and mixed-signal systems
and integrated circuits create and use modules that encapsulate high-level behavioral
descriptions as well as structural descriptions of systems and components. The behavior
of each module can be described mathematically in terms of its terminals and external
parameters applied to the module. The structure of each component can be described in

Version 1.4 Verilog-AMS Language Reference Manual 1-1

Mixed-signal language features Verilog-AMS Overview

1.2

Version 1.4

terms of interconnected sub-components. These descriptions can be used in many
disciplines such as electrical, mechanical, fluid dynamics, and thermodynamics.

Verilog-AMS HDL is defined to be applicable to both electrical and non-electrical
systems description. It suppodsnservativeandsignal-flowdescriptions by using the
terminology for these descriptions using the concept®oksbranchesandports The
solution of analog behaviors which obey the laws of conservation fall within the
generalized form of Kirchhoff's Potential and Flow laws (KPL and KFL). Both of these
are defined in terms of the quantities (e.g. voltage and current) associated with the analog
behaviors.

Mixed-signal language features

The Verilog-AMS extends the features of the digital modeling language (IEEE 1364,
Verilog Hardware Description Language, henceforth called Verilog-D) to provide a
single unified language with both analog and digital semantics with backward
compatibility. Below is a list of salient features of the resulting language:

» signals of both analog and digital types may be declared in the same module
 initial, always andanalogprocedural blocks may appear in the same module

* both analog and digital signal values may be accessed (read operations) from any
context (analog or digital) in the same module

» digital signal values may be set (write operations) from any context outside of an
analogprocedural block

* analog potentials and flows may only receive contributions (write operations)
from inside aranalogprocedural block

» the semantics of theitial, always andanalogprocedural blocks remain the same
as in their respective languages

» thedisciplinedeclaration is extended to digital signals

* anew constructonnectstatement, is added to facilitate auto-insertion of user
defined connection modules between the analog and digital domains

» when hierarchical connections are of mixed type (i.e. analog signal connected to
digital port or digital signal connected to analog port) then user defined
connection modules are automatically inserted to perform signal value
conversion

Verilog-AMS Language Reference Manual 1-2

Systems

1.3

13.1

Version 1.4

Verilog-AMS Overview

Systems

A systenis considered to be a collection of interconnectdponentshat are acted

upon by a stimulus and produce a response. The components themselves might also be
systems, in which case a hierarchical system is defined. If a component does not have
any sub-components, then it is considered a primitive component. Each primitive
component connects to one or more nodes. The behavior of each component is defined
in terms of signal values at each node.

The components connect to nodes through ports to build hierarchy as shown in
figure 1-2.

Module \T Module

Module

Figure 1-2: Components connect to nodes through ports.

In order to simulate systems, it is necessary to have a complete description of the system
and all of its components. Descriptions of systems are usually given structurally. That is,
the description of a system contains instances of components and how they are
interconnected. Descriptions of components are given using behavior and or structure. A
behavior is a mathematical description that relates the signals at the ports of the
components.

Conservative systems

An important characteristic of conservative systems is that there are two values
associated with every node (and hence every terminal) - the potential (also known as the
across value, or the voltage in electrical systems) and the flow (the through value, or the
current in electrical systems). The potential of the node is shared with all terminals
connected to the node in such a way that all terminals see the same potential. The flow
is shared such that flow from all terminals at a node must sum to zero. In this way, the
node acts as an infinitesimal point of interconnection in which the potential is the same
everywhere on the node and on which no flow can accumulate. Thus, the node embodies
Kirchhoff's Potential and Flow Laws (KPL and KFL). When a component connects to a
node through a conservative terminal, it may either affect, or be affected by, either the
potential at the node, and/or the flow onto the node through the terminal.

Verilog-AMS Language Reference Manual 1-3

Systems Verilog-AMS Overview

With conservative systems it is also useful to define the concept of a branch. A branch
is a path of flow between two nodes through a component. Every branch has an
associated potential (the potential difference between the two nodes) and flow.

A behavioral description of a conservative component is constructed as a collection of
interconnected branches. The constitutive equations of the component are formulated as
to relate the branch potentials and flows. In the probe/source approach, the branch
potential or flow is specified as a function of branch potentials and flows. If the branch
potential and flow are left unspecified, not on the left-hand side of a contribution
statement, then the branch acts as a probe. In this case, if the branch flow is used in an
expression, the branch potential is forced to zero. Otherwise the branch flow is assumed
to be zero and the branch potential is available for use in an expression. Using both the
potential and flow of a ‘probe’ branch in an expression is not allowed. Nor is specifying
both the branch potential and flow at the same time. (While these last two conditions are
not really necessary, they do eliminate conditions that are useless and confusing.)

1.3.1.1 Reference nodes

The potential of a single node is given with respect to a reference node. The potential of
the reference node, which is callgdund in electrical systems, is always zegpound

is the global reference node in the circuit. It is compatible with all analog disciplines. It
is used to bind a terminal of an instantiated module to the refernce node.

1.3.1.2 Reference directions
The reference directions for a generic branch are as follows.

flow

+ potential

Figure 1-3: Reference directions

The reference direction for a potential is indicated by the plus and minus symbols near
each terminal. Given the chosen reference direction, the branch potential is positive
whenever the potential of the terminal marked with a plus sign (A) is larger than the
potential of the terminal marked with a minus sign (B). Similarly, the flow is positive
whenever it moves in the direction of the arrow (in this case #dat).

Verilog-AMS HDL uses associated reference directions. A positive flow enters a branch
through the terminal marked with the plus sign and exits the branch through the terminal
marked with the minus sign.

Version 1.4 Verilog-AMS Language Reference Manual 1-4

Systems Verilog-AMS Overview

1.3.2 Kirchhoff's laws

In formulating system equations, Verilog-AMS HDL uses two sets of relationships. The
first are the constitutive relationships that describe the behavior of each component.
Constitutive relationships can be kept inside the simulator as built-in primitives, or they
can be provided by Verilog-AMS HDL module definitions.

The second set of relationships, interconnection relationships, describe the structure of
the network. Interconnection relationships, which contain information on how the
components are connected to each other, are only a function of the system topology.
They are independent of the nature of the components.

The Verilog-AMS HDL simulator uses Kirchhoff's laws to define the relationships
between the nodes and the branches. Kirchhoff's laws are typically associated with
electrical circuits that relate voltages and currents. However, by generalizing the
concepts of voltages and currents to potentials and flows, Kirchhoff's laws can be used
to formulate interconnection relationships for any type of system.

Kirchhoff's laws provide the following properties relating the quantities present on
nodes and branches.

» Kirchhoff's Flow Law (KFL)
The algebraic sum of all flows out of a node at any instant is zero.

* Kirchhoff's Potential Law (KPL)
The algebraic sum of all the branch potentials around a loop at any instant is zero.

ﬂOWl

[

flow + 0
- ¥ = ’ +otential_ potentiay
potential 3 P 5 g
5 5
+ 5 8 IS]
8 + +a
g
(]
'
+ -
S potentia,
KEL KPL
_ -potential, -potentiaj
flow; + flow, + flow3 = 0 +potential + potential, = 0

Figure 1-4: Kirchhoff's Flow Law (KFL) and Potential Law (KPL)

Version 1.4 Verilog-AMS Language Reference Manual 1-5

Systems

1.3.3

1.3.4

Version 1.4

Verilog-AMS Overview

These laws imply that a node is infinitely small so that there is negligible difference in
potential between any two points on the node and a negligible accumulation of flow.

Signal-flow systems

Unlike conservative systems, signal-flow systems only have one potential associated
with every node. As a result, a signal-flow terminal must be unidirectional. It may either
read the potential of the node, or it may specify it. Signal-flow terminals are either
considered input ports if they pass the potential of the node into a component, or output
ports if they specify the potential of a node.

Signal-flow terminals support a subset of the functionality of conservative terminals. As
such, one can always use conservative semantics to represent signal-flow components.
There are, however, two important benefits that result from allowing direct description
of signal-flow components using signal-flow semantics. First, one only need declare the
types of signals that one intends to use. Second, signal-flow semantics require a smaller
number of equations and unknowns, and so results in a formulation that is more efficient
to simulate.

There are some restrictions that are typically present in signal-flow formulations. For
example,

» Typically, one cannot directly interface signal-flow and conservative
components.

» Typically, signals are potential-like, making it difficult to represent flow-like
signals.

* Typically, components descriptions can only be written in terngsoofd-
referred signals, making it difficult to write descriptions of components that use
floating or differential signals.

Mixed conservative/signal flow systems

When practicing the top-down design style, it is extremely useful to mix conservative
and signal-flow components in the same system. Users typically use signal-flow models
early in the design cycle when the system is described in abstract terms, and gradually
convert component models to conservative form as the design progresses. Thus, it is
important to be able to initially describe a component using a signal-flow model, and
later convert it to a conservative model, with minimum changes. It is also important to
allow conservative and signal-flow components to be arbitrarily mixed in the same
system.

The approach taken is to write component descriptions using conservative semantics,
except that terminal and node declarations will only require types for those values that
are actually used in the description. Thus, signal-flow terminals will only require the type
of one potential to be specified (typically the potential, but could alternatively be the

Verilog-AMS Language Reference Manual 1-6

Systems Verilog-AMS Overview

flow), whereas conservative terminals would require types for both values (the potential
and flow). For example, consider a differential voltage amplifier, a differential current
amplifier, and a resistor. The amplifiers are written using signal-flow terminals and the
resistor uses conservative terminals. These examples are meant to illustrate conceptual
points only, and are not complete descriptions of the model.

module voltage_amplifier (out, in) ;

input in ;

output out ;

voltage out, // Discipline voltage defined elsewhere
in; /I with access function V()

parameter real GAIN_V =10.0;

analog
V(out) <+ GAIN_V *V(in) ;

endmodule

In this case, only the voltage on the terminals are declared because only voltage is used
in the body of the model.

module current_amplifier (out, in) ;

input in ;

output out ;

current out, I/l Discipline current defined elsewhere
in; /I with access function I()

parameter real GAIN_| =10.0;

analog
I(out) <+ GAIN_I * I(in) ;

endmodule

Here, only current is used in the body of the model, so only current need be declared at
the terminals.

Version 1.4 Verilog-AMS Language Reference Manual 1-7

Systems

Version 1.4

Verilog-AMS Overview

module resistor (a, b) ;

inout a, b ;

electrical a, b ; /I access functions are V() and 1()
parameterreal R =1.0;

analog
V(a,b) <+ R *I(a,b) ;

endmodule

The description of the resistor relates both the voltage and current on the terminals. Both
are defined in the conservative disciplanetrical

In summary, only those signals types declared on the terminals are accessible in the body
of the model. Conversely, only those signals types used in the body need be declared.

This approach provides all of the power of the conservative formulation for both signal-
flow and conservative terminals, without forcing types to be declared for unused signals
on signal-flow nodes and terminals. In this way, the first benefit of the traditional signal-
flow formulation is provided without the restrictions. The second benefit, that of a
smaller, more efficient, set of equations to solve, is provided in a manner that is hidden
from the user. The simulator begins by treating all terminals as being conservative,
which will allow the connection of signal-flow and conservative terminals. This results
in additional unnecessary equations for those nodes that only have signal-flow terminals.
This situation can be recognized by the simulator and those equations eliminated.

Thus, this approach to allowing mixed conservative/signal-flow descriptions provides
the following benefits:

» Conservative components and signal-flow components can be freely mixed. In
addition, signal-flow components can be converted to conservative components,
and vice versa, by modifying only the component behavioral description.

» Many of the capabilities of conservative terminals, such as the ability to access
flow and the ability to access floating potentials, are available with signal-flow
terminals.

» Signal-types only have to be given for potentials and flows if they are accessed
in a behavioral description.

* Ifnodes and terminals are used only in a structural description (only in instance
statements), then no signal-types need be specified.

Verilog-AMS Language Reference Manual 1-8

Conventions used in this document Verilog-AMS Overview

1.35

1.4

Version 1.4

Natures, disciplines and nodes

Verilog-AMS HDL allows definition of nodes based on disciplines. The disciplines
associate potential and flow natures for conservative systems or only potential nature for
signal-flow systems. The natures are a collection of attributes, including user defined
attributes, that describes the units (meter, gram, newton, etc.), absolute tolerance for
convergence, and the names of potential and flow access functions.

The disciplines and natures can be shared by many nodes. The compatibility rules help
enforce the legal operations between nodes of different disciplines.

Conventions used in this document

This document is organized into sections, each of which focuses on some specific area
of the language. There are subsections within each section to discuss with individual
constructs and concepts. The discussion begins with an introduction and an optional
rationale for the construct or the concept, followed by syntax and semantic description,
followed by some examples and notes.

The formal syntax of Verilog HDL is described using Backus-Naur Form (BNF). The
following conventions are used:

1. Lower case words, some containing embedded underscores, are used to denote
syntactic categories, for example:

module_declaration

2. Bold face words are used to denote reserved keywords, operators and
punctuation marks as required part of the syntax. For example:

module =

3. A vertical bar separates alternative items. For example:

attribute ::=
abstol | units | identifier

4. Square brackets enclose optional items. For example:
input_declaration ::#nput [range] list_of_port$

5. Braces enclose a repeated item unless the braces appear in bold face, in which
case it stands for itself. The item may appear zero or more times; the repetitions
occur from left to right as with an equivalent left-recursive rule. Thus, the
following two rules are equivalent:

list_of port_def ::= port_def { port_def}

Verilog-AMS Language Reference Manual 1-9

Contents Verilog-AMS Overview

list_of port_def ::=
port_def
| list_of port_def port_def

6. If the name of any category starts with an italicized part, it is equivalent to the
category name without the italicized part. The italicized part is intended to
convey some semantic information. For exampleb constant_expression and
Isb_constant_expression are equivalent to constant_expression, and
node identifier is an identifier that is used to identify (declare or reference) a
node.

The main text usetalicizedfont when a term is being defined, and constant-width font
for examples, file names, and while referring to constants.

15 Contents

This document contains the following chapters:

1. Verilog-AMS Overview
This section gives the overview of analog modeling, basic concepts, and
describes Kirchhoff's Potential and Flow Laws.

2. Lexical Conventions
This section lexical tokens used in Verilog-AMS HDL.

3. Data Types
This section describes the data types - integer, real, parameter, nature, discipline,
and node - as used in Verilog-AMS HDL descriptions.

4. Expressions
This section describes expressions, mathematical functions, and time domain
functions used in Verilog-AMS HDL.

5. Signals
This section describes signals and branches, access to signals and branches, and
various transformation functions.

6. Analog Behavior
This section describes the basic analog block and procedural language constructs
available in Verilog-AMS HDL for behavioral modeling.

7. Mixed-Signal
This section describes the mixed-signal aspects of the Verilog-AMS HDL
language.

Version 1.4 Verilog-AMS Language Reference Manual 1-10

Contents Verilog-AMS Overview

8. Hierarchical Structures
This section describes how to build hierarchical descriptions using Verilog-AMS
HDL.

A. Scheduling Semantics
This annex describes the basic simulation cycle as applicable to Verilog-AMS
HDL.

B. Open Issues
This annex lists the open issues known to the working group.

C. Analog Language Subset
This annex describes the analog subset of Verilog-AMS HDL.

D. Syntax
This annex describes formal syntax for all Verilog-AMS HDL constructs in
Backus-Naur Form (BNF).

E. Keywords
This annex lists all the words that are recognized in Verilog-AMS HDL as
keywords.

F. System Tasks and Functions
This annex describes all system tasks and functions in Verilog-AMS HDL.

G. Compiler Directives
This annex describes all compiler directives in Verilog-AMS HDL.

H. Standard Definitions
This annex provides definitions of several natures, disciplines and constants
useful writing models in Verilog-AMS HDL.

I. SPICE Compatibility
This annex describes SPICE compatibility with Verilog-AMS HDL.

J. Glossary
This annex describes various terms used in this document.

Version 1.4 Verilog-AMS Language Reference Manual 1-11

Contents Verilog-AMS Overview

Version 1.4 Verilog-AMS Language Reference Manual 1-12

Lexical tokens Lexical Conventions

Section 2

| exical Conventions

This section describes the lexical tokens used in Verilog-AMS HDL source text and their
conventions. This section is based on Section 2, Lexical conventions, of IEEE 1364-
1995. The changes specific to Verilog-AMS can be found in sections 2.5.3 and 2.6.2.

2.1 Lexical tokens

A Verilog-AMS HDL source text file is a stream of lexical tokendeRical token

consists of one or more characters. The layout of tokens in a source file is free format—
that is, spaces and newlines are not syntactically significant other than being token
separators, except escaped identifiers (Section 2.6.1).

The types of lexical tokens in the language are as follows:

- white space

- comment

- operator

- number

- string

- identifier and keyword

2.2 White space

White space token type contains the characters for spaces, tabs, newlines, and formfeeds.
These characters are ignored except when they serve to separate other lexical tokens.

2.3 Comments

The Verilog-AMS HDL has two forms to introduce comment&n&-line comment

starts with the two characters // and ends with a nevliloek commentstart with /*

and ends with */. Block comments can not be nested. The one-line comment token // does
not have any special meaning in a block comment.

Version 1.4 Verilog-AMS Language Reference Manual 2-1

Operators Lexical Conventions

comment ::=
short_comment
| long_comment

short_comment ::=
/I { any_ASCII_characters_except_end_of line}

long_comment ::=
[* {any_ASCII_characters ¥/

Figure 2-1: Syntax for comments

2.4 Operators

Operators are single, double, or triple character sequences and are used in expressions.
Section 4 discusses the use of operators in expressions.

Unary operatorsappear to the left of their operaminary operatorsappear between
their operands. Aonditional operatoihas two operator characters that separate three
operands.

2.5 Numbers

Constant numbersan be specified as integer constants or real constants. The syntax for
constants is as shown below:

Version 1.4 Verilog-AMS Language Reference Manual 2-2

Numbers

251

25.2

Version 1.4

Lexical Conventions

number ::=
decimal_number
| real_number

decimal_number ::=
[sign] unsigned_num

real_number ::=
[sign] unsigned_numunsigned_num
| [sign] unsigned_num.[unsigned_num & [sign] unsigned_num
| [sign] unsigned_num.[unsigned_num [sign] unsigned_num
| [sign] unsigned_num.[unsigned_num] scale_factor
sign ::=
+]-

unsigned_num ::=
decimal_digit {_ | decimal_digit }
decimal_digit ::=
0]1]2|3]4]5]6|7]8]9
scale_factor ::=
TIGIM|K[k[m[u|n|p|f]|a

Figure 2-2: Syntax for integer and real constants

Integer constants

Integer constantare specified in decimal format as a sequence of digits O through 9,
optionally starting with a plus or minus unary operator. The underscore character () is
legal anywhere in a decimal number except as the first character. The underscore
character is ignored. This feature can be used to break up long numbers for readability
purposes.

Examples:

27_195_000 /l same as 27195000
-659

Real constants

Thereal constant numberare represented as described by IEEE STD-754-1985, an
IEEE standard for double precision floating point numbers.

Real numbers can be specified in either decimal notation (for example, 14.72) or in
scientific notation (for example, 39e8, which indicates 39 multiplied by 10 to the 8th
power). Real numbers expressed with a decimal point must have at least one digit on
each side of the decimal point. The underscore character is legal anywhere in a real

Verilog-AMS Language Reference Manual 2-3

Numbers Lexical Conventions

constant except as the first character of the constant or the first character after the
decimal point. The underscore character is ignored.

Examples:

1.2

0.1

2394.26331

1.2E12 /I the exponent symbol can be e or E
1.30e-2

0.1le-0

23E10

29E-2

236.123 763 e-12 /I underscores are ignored

The following are invalid forms of real numbers because they do not have at least one
digit on each side of the decimal point:

A2
9.
4.E3
.2e-7

253 Scale factors for real constants

The floating-point numbers can be specified with the following letter symbols for the
scale factors indicated. Scale factors and scientific notation are not allowed to be used
together in describing a real number.

m = 10°
T =102 u=10°
G =10 n=10°
M= 1P p = 1012
K=10®; k=10 |f=10"°
a=10'

Figure 2-3: Symbols used as multipliers to numbers
No space is permitted between the number and the symbol.

This form of floating-point number specification is provided in Verilog-AMS HDL in
addition to the two methods for writing floating-point numbers described earlier.

Version 1.4 Verilog-AMS Language Reference Manual 2-4

Identifiers, keywords, and system names Lexical Conventions

Example:
Short form Expanded form
1.3u 1.3e-6 or 0.0000013
5.46K 5460

2.6 Identifiers, keywords, and system names

Anidentifieris used to give an object a unigue name so it can be referenced. An identifier
can be any sequence of letters, digits, dollar signs ($), and the underscore characters ().

The first character of an identifier can not be a digit or $; it can be a letter or an
underscore. Identifiers are case sensitive.

Examples:

shiftreg_a
busa_index
error_condition
merge_ab
_bus3

n$657

2.6.1 Escaped identifiers

Escaped identifierstart with the backslash character (\) and end with white space
(space, tab, newline). They provide a means of including any of the printable ASCII
characters in an identifier (the decimal values 33 through 126, or 21 through 7E in
hexadecimal).

Neither the leading back-slash character nor the terminating white space is considered to
be part of the identifier. Therefore, an escaped identifier \cpu3 is treated the same as a
non-escaped identifier cpu3.

Examples:

\busa+index

\-clock
arror-condition
\netl/\net2

\{a,b}

\a*(b+c)

Version 1.4 Verilog-AMS Language Reference Manual 2-5

Identifiers, keywords, and system names Lexical Conventions

2.6.2 Keywords

Keywordsare predefined non-escaped identifiers that are used to define the language
constructs. Preceding a Verilog-AMS keyword with an escape character causes it to be
interpreted as an escaped identifier.

All keywords are defined in lowercase only. Annex E gives a list of all defined
keywords.

26.2.1 Verilog-AMS Keywords
In addition to the keywords within Verilog-D HDL, the following are additional
keywords used by Verilog-AMS HDL. These additional keywords are used in
declaration of datatypes (Section 3) and in behavioral modeling (Section 6)

abstol continuous enddiscipline generate merged units
access ddt_nature endnature genvar nature using
analog discipline exclude ground potential with
branch discrete flow idt_nature split

connect domain from inf to

Figure 2-4: List of additional keywords

2.6.2.2 Built-in math functions
The following are reserved keywords used by the math library (Section 4.2).

abs asin atan2 cos floor log pow sqrt
acos asinh atanh cosh Ihypot max sin tan
acosh atan ceil exp In min sinh tanh

Figure 2-5: List of built-in math functions

Version 1.4 Verilog-AMS Language Reference Manual 2-6

Identifiers, keywords, and system names Lexical Conventions

2.6.2.3 Built-in analog functions

The following are reserved keywords for all built-in analog functions which can be used
in analog blocks (Section 4.4 and Section 6).

ac_stim discontinuity initial_step last_crossing white_noise
analysis final_step laplace_nd limexp zi_nd
bound_step flicker_noise laplace_np noise_table zi_np

ddt idt laplace_zd slew zi_zd

delay idtmod laplace _zp transition zi_zp

Figure 2-6: List of built-in analog functions

26.24 Built-in analog and mixed-signal functions

The following are reserved keywords for all built-in mixed-signal functions (Section
6.7.5).

Cross timer
Figure 2-7: List of built-in mixed-signal functions

2.6.25 Built-in driver access functions

The following are reserved keywords for all built-in driver access functions
(Section 7.7).

driver_active driver_local driver_state
driver_count driver_next_state driver_strength
driver_delay driver_next_strength

Figure 2-8: List of built-in driver access functions

2.6.3 System tasks and functions

The$ character introduces a language construct that enables development of user-
defined tasks and functions. A name following $ie interpreted as system tashkr a
system functian

The syntax for a system task or function is as follows:

Version 1.4 Verilog-AMS Language Reference Manual 2-7

Identifiers, keywords, and system names Lexical Conventions

system_task _or_function ::=
$system_tashdentifier [(list_of_argument$] ;
| $system_functionidentifier [(list_of_argument}] ;

list of arguments ::=
argument {, [argument] }
argument ::=
expression

Figure 2-9: Syntax for system tasks and functions

Annex F lists all the system tasks for Verilog-AMS.

Any valid identifier, including keywords already in use in contexts other than this
construct can be used as a system task or function name.

Examples:

$display ("display a message");
$finish;

2.6.4 Compiler directives

The" character (the ASCII value 60, called open quote or accent grave) introduces a
language construct used to implement compiler directives. The compiler behavior
dictated by a compiler directive takes effect as soon as the compiler reads the directive.
The directive remains in effect for the rest of the compilation unless a different compiler
directive specifies otherwise. A compiler directive in one description file can therefore
control compilation behavior in multiple description files.

Annex G lists all the compiler directives for Verilog-AMS.

Any valid identifier, including keywords already in use in contexts other than this
construct can be used as a compiler directive name.

Example:

“define wordsize 8

Version 1.4 Verilog-AMS Language Reference Manual 2-8

Integer and real datatypes Data Types

Section 3
Data Types

Verilog-AMS HDL supports integer, real, and parameter data types as found in Verilog
HDL. It also modifies the parameter data types and introduces array of real as an
extension of real data type.

Verilog-AMS HDL introduces a new data type, calfemtie for representing analog
signals. The nodes hadesciplinesthat define the natures of potential and flow and
associated attributes. A new datatype cajjexvarhas been introduced for use with
behavioral loops.

3.1 Integer and real datatypes

The syntax for declaringpiteger andreal is as follows:

integer_declaration ::=

integer list_of identifiers;
real_declaration ::=

real list_of identifiers;

list_of identifiers ::=
var_name { var_name }
var_name ::=
variable _identifier
| array_identifier range
range ::=
[upper_limit constant_expressioiower_limit_constant_expressipn

Figure 3-1: Syntax for integer and real declarations

An integerdeclaration declares one or more variables of type integer. These variables
can hold values ranging from¥2to 22-1. Arrays of integers can be declared using a
range that defines the upper and lower indices of the array. Both indices must be constant
expressions and must evaluate to a positive integer, a negative integer, or zero.

Arithmetic operations performed on integer variables produce 2’s complement results.

Version 1.4 Verilog-AMS Language Reference Manual 3-1

Parameters Data Types

A real declaration declares one or more variables of type real. The real variables are
stored as 64 bit quantities, as described by IEEE STD-754-1985.

Arrays of real can be declared using a range that defines the upper and lower indices of
the array. Both indices must be constant expressions and must evaluate to a positive
integer, a negative integer, or zero.

Both integer and real variables are initialized to zero at the start of a simulation.

Examples:
integer a[1:64]; /I an array of 64 integer values
real float ; /I a variable to store real value
real gain_factor[1:30] ; /I array of 30 gain multipliers

/I with floating point values

3.2 Parameters

The syntax for parameter declarations is as follows:

Version 1.4 Verilog-AMS Language Reference Manual 3-2

Parameters

Data Types

parameter_declaration ::=
parameter [opt_type] list_of param_assignments

opt_type ::=
real
| integer

list_of param_assignments ::=
declarator_init
| list_of param_assignmentdeclarator_init

declarator_init ::=
parameter identifier= constant_expression {opt_value_range}
| parameterarray_identifier = constant_param_arrayinit

parameter_identifier ::=
identifier

parameter_array_identifier ::=
identifier range

opt_value_range ::=
from value_range_specifier
| excludevalue _range_specifier
| excludevalue constant_expression

value_range_specifier ::=
start_paren expressionkxpression2 end_paren

start_paren ::=

[
| (

end_paren ::=

]
)

expressionl ::=
constant_expressionihf

expression2 ::=

constant_expressiotinif
constant_param_arrayinit ::=

{ param_arrayinit_element_list
param_arrayinit_element_list ::=

param_arrayinit_element param_arrayinit_element }

param_arrayinit_element ::=
constant_expression [= value_range_specifier]
| constant_expressidrconstant_expression [= value_range_specifjer]

Version 1.4

Figure 3-2: Syntax for parameter declaration

Verilog-AMS Language Reference Manual 3-3

Parameters

3.2.1

Version 1.4

Data Types

The list of parameter assignments must be a comma-separated list of assignments, where
the right hand side of the assignment must be a constant expression, that is, an expression
containing only constant numbers and previously defined parameters. For parameters
that are defined as arrays, the initializer must banstant_param_arrayir@tXpression

which is a list of constant expressions containing only constant numbers and previously
defined parameters within '{" and '}’ delimiters.

Parameters represent constants, hence it is illegal to modify their value at runtime.
However, parameters can be modified at compilation time to have values that are
different from those specified in the declaration assignment. This allows customization
of module instances. A parameter can be modified witldéflgaram statement, or in

the module instance statement.

By nature, analog behavioral specifications are characterized more extensively in terms
of parameters than their digital counterparts. There are three fundamental extensions to
the parameter declarations defined in IEEE 1364:

* An optional type for the parameter can be specified in Verilog-AMS HDL. In
IEEE 1364, the type of a parameter defaults to the type of the default expression.

» Arange of permissible values can be defined for each parameter. In IEEE 1364,
this check had to be done in user’'s model or was left as an implementation
specific detail.

» Parameter arrays of basic integer and real data types.

Type Specification

The parameter declaration can contain an optional type specification. In this sense, the
parameter keyword acts more as a type qualifier than a type specifier. A default value for
the parameter must be specified.

The following examples illustrate this concept:

parameter real slew_rate= 1e-3;
parameter integer size= 16;

If the type of a parameter is not specified, it is derived from the type of the value of the
constant expression as in IEEE 1364.

If the type of the parameter is specified, and the value assigned to the parameter conflicts
with the type of the parameter, the value is coerced to the type of the parameter. For
example,

parameter real size= 10;
Here,sizewill be coerced tao.o

Verilog-AMS Language Reference Manual 3-4

Parameters Data Types

3.2.2 Value Range Specification

The parameter declaration can contain optional specifications of the permissible range
of the values of a parameter. More than one range may be specified for inclusion or
exclusion of values as legal values for the parameter.

The use of bracketgsand], indicate inclusion of the end points in the valid range. The
use of parenthesisand), indicate exclusion of the end points from the valid range. Itis
possible to include one end point and not the other g$iagd(]. The first expression

in the range must be numerically smaller than the second expression in the range.

For example,

parameter real neg_rail = -15rom [-50:0) ;
parameter integer pos_rail = 15rom (0:50) ;
parameter real gain = 1from [1:100Q ;

Here, the parametaeg_railis given a default value efsand only allowed to acquire
values within the range 660 <= neg_rail < 0 Similarly, for parametepos_rail the default
value isi5and itis only allowed to acquire values within the range e©pos_rail < 50For
parametegain, the default value is 1 and itis allowed to acquire values within the range
of 1<= gain <= 1000

The keywordnf may be used to indicate infinity. If preceded by a negative sign, it
indicates negative infinity. For example,

parameter real val3=0from [0:inf) exclude (0:20 exclude (30:40Q;

A single value may be excluded from the possible valid values for a parameter. For
example,

parameter real res = 1.GexcludeO ;
The value of a parameter is checked against the specified range.

3.2.3 Parameter Arrays

The Verilog-AMS HDL specification includes behavioral extensions that utilize arrays.
It requires that these arrays be initialized in their definitions and allow overriding their
value as with other parameter types. The declaration of arrays of parametersis in a
similar manner to those of parameters and register arrays of reals and integers in
Verilog—D HDL.

For example,
parameter real poles[0:3] ={ 1.0, 3.198, 4.554, 2.00 };

Version 1.4 Verilog-AMS Language Reference Manual 3-5

Genvars

3.3

Data Types

Genvars

Genvars are integer-valued variables that compose static expressions for instantiating
structure behaviorally such as accessing analog signals within behavioral looping
constructs. The syntax for declaring genvar variables is as follows:

genvar_declaration ::=
genvarlist_of _genvar_identifiers ;

list_of genvar_identifiers ::=
genvar_identifier {, genvar_identifier }

3.4

Version 1.4

Figure 3-3: Syntax for genvar declaration

The static nature of genvar variables is derived from the limitations upon the contexts in
which their values can be assigned. For example:

genvari;
analog begin

for (i=0;i<8 =i+ 1)begin
V(out[i]) <+ transition (valuel[i], td, tr);
end

-
The genvar variable, can only be assigned to within the for-loop control. Assignments
to the genvar variabliecan consist only of expressions of static values, e.g., parameters,
literals and other genvar variables.

Nodes

In addition to the data types supported by IEEE 1364, for continuous time simulation an
additional data typeyode is introduced in Verilog-AMS. The fundamental

characteristic of a node data type is that the values of a node are defined by simultaneous
solution of equations defined by the instances connected tmtieeising Kirchhoff's
conservation laws. In general, a node represents a point of physical connections between
entities of continuous-time description, obeying conservation-law semantics.

A node is characterized by thigsciplineit follows. For example, all low-voltage nodes

have certain common characteristics, all mechanical nodes have certain characteristics,
etc. Therefore, a node is always declared as a type of discipline. In this sense, a discipline
is a user defined type for declaring a node.

A discipline is characterized by the attributes definemhituresfor potential and flow.

Verilog-AMS Language Reference Manual 3-6

Nodes

3.4.1

Version 1.4

Natures

Data Types

A nature is a collection of attributes. In Verilog-AMS HDL, there are several pre-
defined attributes. In addition, user-defined attributes may be declared and assigned
constant values in a nature.

The nature declarations are at the same level as discipline and module declarations in the
source text. That is, natures are declared at the top level, and nature declarations do not
nest inside other nature declarations, discipline declarations, or module declarations.

The syntax for defining a nature is as follows:

nature_declaration ::=

nature nature_name
[nature_descriptions]
endnature

nature_name ::=

nature_identifier
nature identifier: parentidentifier

parent_identifier ::=

nature identifier
discipline_identifier.flow
discipline _identifier.potential

nature_descriptions ::=

nature_description { nature_description }

nature_description ::=
attribute= constant_expressign

attribute ::=

abstol

access
ddt_nature
idt_nature

units
attribute_identifier

Figure 3-4: Syntax for nature declaration

A nature must be defined between the keywoatsre andendnature. Each nature
definition must have a unique identifier as the name of the nature, and must include all
the required attributes as noted in 3.4.1.2.

For example,

Verilog-AMS Language Reference Manual

Nodes

34.11

3.4.1.2

Version 1.4

Data Types

nature current
units = "A";
access= | ;
idt_nature = charge ;
abstol=1u;
endnature

nature voltage
units = "V";
access V;
abstol=1u;

endnature

Derived Natures

A nature may be derived from an already declared nature. This allows the new nature to
have the same attributes as the attributes for the already declared nature. The new nature
is called aderived natureand the existing nature is callegbarent naturelf a nature is

not derived from any other nature, then it is call&ase nature

In order to derive a new nature from an existing nature, the new nature name should be
followed by a colon (:) and the name of the parent nature in the nature definition.

A derived nature may declare additional attributes, or override values of the attributes
already declared in the parent nature, with certain restrictions (as outlined in
section 3.4.1.2) for the predefined attributes.

The attributes of the derived nature are accessed in the same manner as accessing
attributes of any other nature.

For example,

nature ttl_curr
units = "A" ;
access= | ;
abstol=1u;

endnature

/l An alias

nature ttl_node_curr : ttl_curr
endnature

nature new_curr : ttl_curr /I derived, but different
abstol=1m; /I modified for this nature
max =12.3; /I new attribute for this nature
endnature

Attributes

Attributes define the value of certain quantities that characterize the nature. There are
five predefined attributes -abstol, accessidt_nature, ddt_nature, andunits. In
addition, user defined attributes may be defined in a nature.

Attribute declaration assigns a constant expression to the attribute name.

Verilog-AMS Language Reference Manual 3-8

Nodes

Version 1.4

Data Types

abstol

Theabstol attribute provides a tolerance measure (metric) for convergence of potential
or flow calculation. It specifies the maximum negligible for signals associated with the
nature.

This attribute is required for all base natures. It is legal for a derived nature to change the
abstol attribute but if left unspecified it will inherit the abstol from its parent nature. The
constant expression assigned to it must evaluate to a real value.

access

Theaccesattribute identifies the name for the access function. When the nature is used
to bind potential, the name is used as an access function for the potential; when the nature
is used to bind flow, the name is used as an access function for the flow. The usage of
access function is described further in section 4.3.

This attribute is required for all base natures. It is illegal for a derived nature to change
the access attribute; the derived nature always inherits the access attribute of its parent
nature. When specified, the constant expression assigned to it must be an identifier
(name, not a string).

idt_nature

Theidt_nature attribute provides a relationship between a nature and the nature that
represents its time integral.

Theidt_nature is used to reduce the need for users to specified tolerancesidif)the
operator. If this operator is applied directly on nodes, then the tolerance can be taken
from the signal eliminating the need to give a tolerance with the operator.

When specified, the constant expression assigned to an idt_nature attribute must be the
name (not a string) of a nature that is defined elsewhere. It is possible for a nature to be
self referring with respect to its idt_nature attribute. In other words, the value of the
idt_nature attribute may be the nature that the attribute itself is associated with.

Theidt_nature attribute is optional with its default value being the nature itself. While

it is possible to override the parent’s value of the idt_nature attribute using a derived
nature, the nature specified must be related (share the same base nature) to the nature
used for the idt_nature attribute by the parent.

ddt_nature
Theddt_nature attribute provides a relationship between a nature and the nature that
represents its time derivative.

Theidt_nature is used to reduce the need for users to specified tolerancesidi()the
operator. If this operator is applied directly on nodes, then the tolerance can be taken
from the signal eliminating the need to give a tolerance with the operator.

Verilog-AMS Language Reference Manual 3-9

Nodes

3.4.1.3

3.4.2

Version 1.4

Data Types

When specified, the constant expression assigned to a ddt_nature attribute must be the
name (not a string) of a nature that is defined elsewhere. It is possible for a nature to be
self referring with respect to its ddt_nature attribute. In other words, the value of the
ddt_nature attribute may be the nature that the attribute itself is associated with.

Theddt_nature attribute is optional with its default value being the nature itself. While

it is possible to override the parent’s value of the ddt_nature attribute using a derived
nature, the nature specified must be related (share the same base nature) to the nature
used for the ddt_nature attribute by the parent.

units

Theunits attribute provides a binding between the value of the access function and the
units for that value.

The units field is provided so that simulators can annotate the signals with their units and
is also used in the node compatibiltiy rule check.

This attribute is required for all base natures. Itis illegal for a derived nature to define or
change the units attribute; the derived nature always inherits the units attribute of its
parent nature. When specified, the constant expression must be a string.

User Defined Attributes

In addition to the predefined attributes listed above, a nature can have other attributes
that may be useful for analog modeling. Typical examples include certain maximum and
minimum values to define valid range, etc.

A user defined attribute may be declared in the same manner as any of the predefined
attributes. The name of the attribute must be unique in the nature being defined, and the
value being assigned to the attribute must be constant.

Disciplines

A discipline description consists of binding natures to potential and flow.
The syntax for declaring a discipline is as follows:

Verilog-AMS Language Reference Manual 3-10

Nodes

Data Types

discipline_declaration ::=
discipline discipline_identifier
[discipline_descriptions]
enddiscipline

discipline_descriptions ::=
discipline_description { discipline_description }

discipline_description ::=
nature_binding

| domain_binding

| attr_override

nature_binding ::=
pot_or_flownature identifier;

domain_binding ::=
domain continuous ;
| domain discrete ;

attr_override ::=
pot_or_flow. attribute_identifier= constant_expressign

pot_or_flow ::=
potential
| flow

3421

Version 1.4

Figure 3-5: Syntax for discipline declaration

A discipline must be defined between the keywaddsipline andenddiscipline Each
discipline must have a unique identifier as the name of the discipline.

The discipline declarations are at the same level as nature and module declarations in the
source text. That is, disciplines are declared at the top level, and discipline declarations
do not nest inside other discipline declarations, nature declarations, or module
declarations.

Nature Binding

Each discipline can bind a nature to its potential and flow.

Only the name of the nature is specified in the discipline. The nature binding for potential
is specified using the keywombtential. The nature binding for flow is specified using
the keywordlow.

The access function defined in the nature bound to potential is used in the model to
describe the signal-flow that obeys Kirchhoff's Potential Law (KPL). This access
function is called theotential access function

Verilog-AMS Language Reference Manual 3-11

Nodes Data Types

The access function defined in the nature bound to flow is used in the model to describe
the signal-flow that obeys Kirchhoff's Flow Law (KFL). This access function is called
theflow access function

Disciplines with two natures are called conservative disciplines, and the nodes
associated with conservative disciplines are called conservative nodes. Conservative
disciplines must not have the same nature specified for both the potential and the flow.
Disciplines with a single potential nature are called as signal-flow disciplines, and the
nodes with signal-flow disciplines are called signal-flow nodes. Only the potential nature
is allowed to be specified for a signal-flow discipline.

Example:
Conservative discipline:

discipline electrical
potential Voltage ;
flow Current ;

enddiscipline

Signal-flow disciplines:

discipline voltage

| potential Voltage ;
enddiscipline
discipline current

| potential Current;
enddiscipline

3.4.2.2 Domain Binding

Analog signal values are represented in continuous time whereas digital signal values are
represented in discrete time. The domain attribute of the discipline stores this property
of the signal.

It takes two possible valuesliscrete andcontinuous. Signals with continuous-time
domain are real valued. Signals with discrete-time domain may either be binary (0, 1, X
or Z), integer or real valued.

For example,

discipline electrical
domain continuous
potential Voltage;
flow Current;

enddiscipline

| discipline logic
domain discrete
enddiscipline

This attribute is optional. The default value for domaiooistinuousfor non-empty
disciplines.

Version 1.4 Verilog-AMS Language Reference Manual 3-12

Nodes

3.4.2.3

3.4.2.4

3.4.25

Version 1.4

Data Types

Empty Disciplines

It is possible to define a discipline with no nature bindings and it has no domain. These
are known as empty disciplines, and may be used in structural descriptions when you
wish to let the components connected to a nhode determine which natures are to be used
for the node.

Example:

discipline neutral
enddiscipline

discipline interconnect
domain continuous
enddiscipline

Overriding Nature Attributes from Discipline

A discipline can override the value of the bound nature for the pre-defined attributes
(except as restricted by section 3.4.1.2), as shown for theatflowr in the example

below. To do so from a discipline declaration, the bound nature and attribute must be
defined, as shown below for thestolvalue within the disciplinel in the following
example. The general formis: the keywdosk or potential, then the hierachical separator

,, then the attribute name, and set all of this equatjdhe new value (e.gflow.abstol =

10u).

nature ttl_curr
units = "A";
access= | ;
abstol=1u;

endnature

nature ttl_volt
units = "V" ;
access V;
abstol=100u ;

endnature

discipline ttl
potential ttl_volt ;
flow ttl_curr ;
flow.abstol = 10u ;
enddiscipline

Deriving Natures from Disciplines

A nature may be derived from the nature bound to potential or flow in a discipline. This
allows the new nature to have the same attributes as the attributes for the nature bound
to the flow or the potential of the discipline.

If the nature binding to the flow or the potential of a discipline changes, the new nature
will automatically inherit the attributes for the changed nature.

Verilog-AMS Language Reference Manual 3-13

Nodes Data Types

In order to derive a new nature from flow or potential of a discipline, the nature
declaration shall also include the discipline name followed by the hierarchical separator
.and the keywordlow or potential, as shown fottl_node_curin the example below.

A nature derived from the flow or potential of a discipline may declare additional
attributes, or override values of the attributes already declared.

For example,

nature ttl_node_currt ttl.flow // from the example in section 3.4.2.4

endnature /[abstol = 10u as modified in ttl

nature ttl_node_volt ttl.potential // from the example in section 3.4.2.4
abstol=1m; /I modified for this nature
max =12.3; I/l new attribute for this nature

endnature

3.4.3 Node Declaration

Each node declaration is associated with an already declared discipline. The following
syntax is used for declaring nodes:

node_declaration ::=

discipline identifier [range] list_of nodes
range ::=

[msb_expressionlsb_expressioh

list of nodes ::=
node_name
| node_namelist_of_nodes

node_name ::=
node identifier
| hierarchical_nodeidentifier

msb_expression ::=
constant_expression

Isb_expression ::=
constant_expression

Figure 3-6: Syntax for node declaration
If a range is specified for a node, the node is called a vector node; otherwise it is called

a scalar node. A vector node is also called an analog bus.
Examples:

Version 1.4 Verilog-AMS Language Reference Manual 3-14

Default Discipline

Data Types

electrical [MSB:LSB] nl ; // MSB and LSB are parameters

voltage [5:0] n2, n3;

magnetic inductor ;

logic [10:1] connectorl ;
Nodes represent the abstraction of information about signals. As terminals (ports of a
module declared as nodes), nodes represent component interconnections. Nodes
declared in the module interface define the terminals to the module (See section 8.3.4)

A node used for modeling a conservative system must have the discipline with both
access functions (potential and flow) defined. For modeling a signal-flow system, the
discipline of a node can have only one access function.

Nodes declared with an empty discipline do not have declared natures, so such nodes
cannot be used in a behavioral description (because the access functions are not known).
However, such nodes can be used in structural descriptions, where they inherit the
natures from the ports of the instances of modules that connect to them.

3.4.4 Implicit Nodes

Nodes can be used in a structural descriptions without being declared. In this case, the
node is implicitly declared to be a scalar node with the empty discipline.The ground
node, as described in section 1.3.1.1, is a special implicit node which allows connection
to the global reference. Implicit nodes cannot appear in behavioral descriptions. For
example:

module top(il, i2, 01, 02, 03);
input i1, i2;
output 01, 02, 03;
electrical i1, i2, 01, 02, 03;

/I abl, ab2, cbl, cb2 are implicit nodes, not declared
blk_aal(il, abl);

blk_aa2(i2, ab2);

blk_b b1(abl, cbl);

blk_b b2(ab2, cb2);

blk_c cl1(0l, 02, 03, cbl, cb2);

endmodule

3.5 Default Discipline

Version 1.4

Verilog-AMS supports thalefault_disciplinecompiler directive. This directive specifies a
default discipline to be applied to any signal that does not have an explicit discipline
declaration.

Verilog-AMS Language Reference Manual 3-15

Default Discipline Data Types

It has the following syntax:

default_discipline_directive ::=

‘default_discipline [discipline_identifier [qualifier] [scope]]
qualifier ::=

integer |real |reg |

wire |tri |wand |triand |wor |trior |trireg |

tri0 | tril | supplyO | supplyl

scope ::= module_identifier

Figure 3-7: Syntax for setting default discipline compiler directive

The scope of this directive is similar to the scope of‘ttedine compiler directive. The
default discipline is applied to all signals without a discipline declaration that appear in
the text stream following the use of tlefault_discipline directive until either the end

of the text stream or until anothdefault_discipline directive with the same
combination of qualifier and scope (if applicable) is found in the subsequent text.
Therefore, more than ordefault_disciplinedirectives can be in force simultaneously,
provide they differ in scope or qualifier or both.

If this directive is used without a discipline name, it turns off all currently active default
disciplines without setting a new default discipline. The subsequent signals without a
discipline will be associated with the empty discipline.

For example,
‘default_disciplinelogic

module behavnand(inl, in2, out);

input inl, in2;
output out;
reg out;
always begin
out = ~(inl1 && in2);
end
endmodule

This example illustrates the usage of ‘thefault_discipline directive. The signalsi,
in2 andoutall have disciplingogic by default.

There is a precedence of such compiler directives. The more specific directives have
higher precedence over the general directives.

Version 1.4 Verilog-AMS Language Reference Manual 3-16

Node Compatibility Data Types

3.5.1

3.6

Version 1.4

Discipline Precedence

While a net itself may be declared only in the module to which it belongs, the discipline
of the net may be specified in a number of ways. The discipline name may appear in the
declaration of the net. The discipline name may be used in a declaration which makes an
out of context reference to the net from another module. The discipline name may be
used in ddefault discipline compiler directive. Discipline conflicts may arise if more
than one of these methods is applied to the same net. Discipline conflicts will be resolved
using the following order of precedence:

1. A declaration from a module other than the module to which the net belongs

using an out of module reference. e.qg.

module examplel;
electrical example2.net;
endmodule

2. The local declaration of the net in the module to which it belongs. e.g.

module example2;
electrical net;
endmodule

3. ‘default_discipline with qualifier and scope e.glefault_discipline electrical
trireg examplel.instance5

4. ‘default_discipline with scope only e.ddefault_discipline electrical
examplel.instance5

5. ‘default_discipline with qualifier only e.g:default_discipline electrical trireg
6. ‘default discipline without qualifier or scope e.gdefault_discipline electrical

It is not legal to have two different disciplines with the same level of precedence for the
same net.

Node Compatibility

Certain operations can be done on nodes only if the two (or more) nodes are compatible.
For example, if an access function has two nodes as arguments, they must be compatible.
The nodes are considered compatible if their respective disciplines are compatible. The
following rules apply in deciding whether two disciplines are compatible:

Self RuleA discipline is compatible with itself.

Potential Compatibility Rulelf the natures of the two potential are compatible, and the
natures of the two flows are not incompatible then the two disciplines are considered
compatible.

Verilog-AMS Language Reference Manual 3-17

Node Compatibility Data Types

Version 1.4

Flow Compatibility Rulelf the natures of the two flows are compatible, and the natures
of the two potential are not incompatible then the two disciplines are considered
compatible.

Nature Compatibility RuleTwo natures are compatible if they both exist and are derived
from the same base nature.

Nature Incompatibility RuleTwo natures are not incompatible if they are compatible or
if one or both do not exist.

Units Value RuleAll compatible natures must have the same value for the attribute
units. Since a child nature cannot override a base nature’s unit, this rule is always
maintained.

Empty Discipline RuteAn empty discipline is compatible with all disciplines.

Discrete Domain RuleDisciplines withdiscretedomain attribute that are of the same
signal value (i.e. bit, real, integer) are compatible with each other.

Domain Incompatibility R@: Disciplines with different domain attributes are
incompatible with each other.

Node Connection Rel It is an error to connect two ports with incompatible disciplines
unless there is @nnectstatement (section 7.4) defined between these disciplines.

The following example illustrates these rules:

Verilog-AMS Language Reference Manual 3-18

Node Compatibility

Version 1.4

Data Types

nature voltage

nature position

access V; accesss X;
units = "V*"; units ="m";
abstol = 1u; abstol = 1u;
endnature endnature
nature current nature force
access |; accesss F;
units = "A"; units = "N";
abstol = 1p; abstol = 1n;
endnature endnature

discipline electrical
potential voltage;
flow current;

enddiscipline

discipline logic : electrical
potential.absto=1m;
enddiscipline

discipline sig_flow_v
potential voltage;
enddiscipline

discipline sig_flow_i
flow current;
enddiscipline

discipline mechanical
potential position;
flow force;

enddiscipline

discipline sig_flow_x
potential position;
enddiscipline

discipline sig_flow_f
flow force;
enddiscipline

discipline empty
enddiscipline

The following compatibility observations can be made from the above example:

electricalandlogic are compatible disciplines because natures for both potential
and flow exist and are derived from the same base natures.

electricalandsig_flow_vare compatible disciplines because nature for potential
is same for both disciplines and nature for flow does not exsstjirflow v

electricalandsig_flow_iare compatible disciplines because nature for flow is
same for both disciplines and nature for potential does not exf iflow_|I

electricalandmechanicabkre incompatible disciplines because natures for both
potential and flow are not derived from the same base natures.

electricalandsig_flow_xare incompatible disciplines because nature for both
potential are not derived from the same base nature.

sig_flow_vandsig_flow _iare compatible disciplines as wellsag_flow vand
sig_flow_f are compatible disciplines because the natures do not conflict (the
potential natures do not conflict because asity flow_vhas a potential nature,

Verilog-AMS Language Reference Manual 3-19

Branches

3.7

3.7.1

Version 1.4

Data Types

and the flow natures do not conflict becasggg flow_vdoes not have a flow
nature)

* Anempty discipline is compatible with all other disciplines because it has neither
a potential nor a flow nature. Without natures, there can be no conflicting natures.

Branches

A branch is a path between two nodes. If both nodes are conservative, then the branch is
a conservative branch and it defines a branch potential and a branch flow. If one node is
a signal-flow node, then the branch is a signal-flow branch and it defines either a branch

potential or a branch flow, but not both.

Branch Declaration

Each branch declaration is associated with two nodes from which it derives a discipline.
These nodes are referred to as the branch terminals. Only one node need be specified, in
which case the second is taken tgghind and the discipline for the branch is taken from

the specified node. The disciplines for the nodes specified must be compatible (see

section 3.6).
The following syntax is used for declaring branches:

branch_declaration ::=
branch list_of branches

list_of branches ::=
terminals list_of_branch_identifiers

terminals ::=
(node_or_port_scalarexpression
| (node_or_port_scalarexpressionnode_or_port_scalarexpressior)

list_of branch_identifiers ::=
branch identifier [range]
| branch identifier [range Jlist_of branch_identifiers

Figure 3-8: Syntax for branch declaration

If one of the terminals of a branch is a vector node, then the other terminal must either
be a scalar or it must be a vector node of the same size. In this case, the branch is referred
to as being a vector branch. When both terminals are vectors, the scalar branches that
make up the vector branch connect between the corresponding scalar nodes that make up

the vector terminals

Verilog-AMS Language Reference Manual 3-20

Branches

3.7.2

Version 1.4

Data Types

Vector Branch

~ ~N /

/ [\

\

90000000

00000000

I | [
| & .
| & |
| o al
~. 7 \ _ / ~ S .
Vector Terminal Vector Terminal

When one terminal is a vector and the other is a scalar, there is one scalar branch

connecting to each scalar node in the vector terminal, and the other terminal of each
branch connects to the scalar terminal

Vector Branch

S AR

- \

-4 |I [|

|: r !i I

| o+ =

| o T o
_/'__,/ |\./ .

Vector Terminal calar Terminal

Accessing Node and Branch Signals

Signals on nodes and branches can be accessed only by the access functions of the
discipline associated with them. The name of the node or the branch must be specified
as the argument to the access function.

For example,

electrical out, in ; /I as defined in Section 3.4.2.1
parameter realgm =1 ;

analog
I(out) <+ gm*V(in) ;

electrical p, n;
branch (p,n) res;
parameter real R = 50;

analog
V(res)<+ R*I(res);

The formal syntax for referencing access functions is as follows:

Verilog-AMS Language Reference Manual 3-21

Branches Data Types

access_function_reference ::=
bvalue
| pvalue
bvalue ::=
access_identifief analog_signal_lisk
analog_signal_list ::=
branch_identifier
| array_branch identifier [genvar_expression]
| node_or_portscalar_expression
| node_or_portscalar_identifier node_or_portscalar_identifier
node_or_port_scalar_expression ::=
node_or_portidentifier
| array_node_or_portidentifier [genvar_expression |
| buss_node_or_portdentifier [genvar_expression]
pvalue ::=
flow_access_identifief < port_scalar_expression)
port_scalar_expression ::=
port_identifier
| array_port identifier [genvar_expression]
| buss_portidentifier [genvar_expression]

Figure 3-9: Syntax for referencing access functions of a node

3.7.3 Accessing Attributes

The attributes are attached to the nature of potential or flow. Therefore, the attributes for
a node or a branch can be accessed using the hierarchical referencing operator (.) to the
potential or flow for the node or the branch.

For example,

electrical a, b, n1, n2;
branch (n1, n2) cap ;
parameter real c= 1p;

analog begin
I(a,b) <+ c*ddt(V(a,b), apotential.abstol);

I(cap)<+ c*ddt(V(cap), nlpotential.abstol) ;
end

The formal syntax for referencing access attributes is as follows:

attribute_reference ::=
node identifier. pot_or_flow. attribute identifier

Figure 3-10: Syntax for referencing attributes of a node

Version 1.4 Verilog-AMS Language Reference Manual 3-22

Namespace Data Types

3.8 Namespace

3.8.1 Nature and Discipline

The natures and disciplines are defined at the same level of scope as that of modules.
Thus, identifiers defined as natures or disciplines have the global scope, and allows
declaration of nodes inside any module in the same manner as an instance of a module.

3.8.2 Access Functions

Each access function name, defined before a module is parsed, is automatically added to
that module’s name space unless there is another identifier defined with same name as
the access function in that module’s name space. Furthermore the access function of each
base nature must be unique for all the base nature access functions.

3.8.3 Node

The scope rules for node identifiers are the same as the scope rules for any other
identifier declarations with one exception - nodes may not be declared anywhere other
than the port of a module or in the module itself. In other words, a node may not be
declared inside any block (hamed or unnamed) other than a module; there is no local
declaration for a node.

All access functions are always uniquely defined for each node based on the discipline
of the node. Each access function is always used with the name of the node as its
argument, and a node is always accessed only through its access functions.

The hierarchical reference character (.) may be used to reference a node across the
module boundary using the rules specified in IEEE 1364.

3.8.4 Branch

The scope rules for branch identifiers are the same as the scope rules for node identifiers.
In other words, branches are declared inside modules but may not be declared inside any
block (named or unnamed) other than a module; there is no local declaration for a branch.

The access functions are always uniquely defined for each branch based on the discipline
of the branch. The access function is always used with the name of the branch as its
argument, and a branch is always accessed only through its access functions.

The hierarchical reference character (.) may be used to reference a node across the
module boundary using the rules specified in IEEE 1364.

Version 1.4 Verilog-AMS Language Reference Manual 3-23

Namespace Data Types

Version 1.4 Verilog-AMS Language Reference Manual 3-24

Operators Expressions

Section 4

EXxpressions

This section describes the operators and operands available in the Verilog-AMS HDL,
and how to use them to form expressions.

An expressions a construct that combineperandswith operatorsto produce a result

that is a function of the values of the operands and the semantic meaning of the operator.
Any legal operand, such as an integer or an indexed element from an array of real,
without any operator is also considered an expression. Wherever a value is needed in a
Verilog-AMS HDL statement, an expression can be used.

Some statement constructs require an expression todrestant expressiohe
operands of a constant expression consists of constant numbers and parameter names,
but can use any of the operators defined in Table 4-1.

4.1 Operators

The symbols for the Verilog-AMS HDL operators are similar to those in the C
programming language. Table 4-1 lists these operators.

Table 4-1 : Operators

4 Concatenation, replication
+ - arithmetic
% modulus
> >= < <= relational

! logical negation

&& logical and

Il logical or

== logical equality

1= logical inequality

~ bit-wise negation

& bit-wise and

| bit-wise inclusive or

N bit-wise exclusive or

Version 1.4 Verilog-AMS Language Reference Manual 4-1

Operators Expressions

Table 4-1 : Operators

A~ or ~N bit-wise equivalence
<< left shift
>> right shift
?: conditional
or event or
41.1 Operators with real operands

The operators shown in Table 4-2 are legal when applied to real operands. All other
operators are considered illegal when used with real operands.

Table 4-2 : Legal operators for use in real expressions

{3, {3} concatenation and replication operator

unary + unary -| unary operators

+ - * arithmetic
> >= < <= relational
I && || logical

== I= logical equality

?: conditional

The result of using logical or relational operators on real numbers is an integer value 0
(false) or 1 (true).

Table 4-2 lists operators that can not be used to operate on real numbers.

Table 4-3 : Operators not allowed for real expressions

% modulus

<< >> shift

41.1.1 Real To Integer Conversion

Real numbers are converted to integers by rounding the real number to the nearest
integer, rather than by truncating it. Implicit conversion takes place when a real number
is assigned to an integer. The ties are rounded away from zero.

Examples:

The real numbers 35.7 and 35.5 both become 36 when
converted to an integer and 35.2 becomes 35.

Converting -1.5 to integer yields -2, converting 1.5 to
integer yields 2.

Version 1.4 Verilog-AMS Language Reference Manual 4-2

Operators

41.1.2

4.1.2

Version 1.4

Expressions

Arithmetic Conversion

For operands, a common data type for each operand is determined before the operator is
applied. If either operand is real, the other operand is converted to real. Implicit
conversion takes place when a integer number is used with a real number in an operand.

Examples:

a=3+5.0;

/I The expression "3 + 5.0" is evaluated by "casting" the

/[integer 3 to the real 3.0, and the result of the expression is 8.0.
b=1/2;

/I The above is integer division and the result is 0.

c=8.0 +(1/2);

/I (1/2) is treated as integer division, but the result is cast to a

/I real (0.0) during the addition, and the result of the expression is 8.0.

Binary operator precedence

The precedence order loihary operatorsand theconditional operatol?:) is shown
below in Table 4-4.

Table 4-4 : Precedence rules for operators

+ -1~ (unary) highest precedence

*1 %

+ - (binary)

<< >>

< <= > >=

& ~&

NN N

&& Y
I

?: (conditional operator) lowest precedence

Operators shown on the same row in Table 4-4 have the same precedence. Rows are
arranged in order of decreasing precedence for the operators. For exampled all
have the same precedence, which is higher than that of the biaady operators.

All operators associate left to right with the exception of the conditional operator which
associate right to left. Associativity refers to the order in which the operators having the

Verilog-AMS Language Reference Manual 4-3

Operators Expressions

same precedence are evaluated. Thus, in the following exapkdded ta and then
C is subtracted from the result ®B.

A+B-C

When operators differ in precedence, the operators with higher precedence associate
first. In the following examples is divided byc (division has higher precedence than
addition) and then the result is addedto

A+B/C
Parentheses can be used to change the operator precedence.
(A+B)/C /I not the sameasA+B/C

4.1.3 Expression evaluation order

The operators follow the associativity rules while evaluating an expression as described
in section 4.1.2. However, if the final result of an expression can be determined early,
the entire expression need not be evaluated. This is cstlled-circuitingan expression
evaluation.

integer A, B, C, result ;
resut=A& (B|C);

If A is known to be zero, the result of the expression can be determined as zero without
evaluating the sub-expressiBnc.

4.1.4 Arithmetic operators

The binary arithmetic operators are the following:

Table 4-5 : Arithmetic operators defined

a+b aplusb

a-b aminus b
a*b a multiply by b
alb adivide by b
a%b a modulo b

The integer division truncates any fractional part toward zero. The modulus operator, for
exampley % z, gives the remainder when the first operand is divided by the second, and
thus is zero whendividesy exactly. The result of a modulus operation takes the sign of
the first operand.

For the case of the modulus operator in which either argument is real, the operation
performed is:

a % b = a - floor(a/b)*b;

Version 1.4 Verilog-AMS Language Reference Manual 4-4

Operators Expressions

The unary arithmetic operators take precedence over the binary operators. The unary
operators are the following:

Table 4-6 : Unary operators defined

+m unary plus m (same as m)

-m unary minus m

Table 4-7 gives examples of modulus operations.

Table 4-7 : Examples of modulus operations

Modulus Expression Result Comments

10% 3 1 10/3 yields a remainder of 1

11% 3 2 11/3 yields a remainder of 2

12% 3 0 12/3 yields no remainder

-10% 3 -1 the result takes the sign of the first operand

11 % -3 2 the result takes the sign of the first operand

10 % 3.75 25 [10 - floor(10/3.75)*3.75] yields a remainder of 2.5
415 Relational operators

Table 4-8 lists and defines the relational operators

Table 4-8 : The relational operators defined

a<b alessthanb

a>b a greater than b

a<=b a less than or equal to b
a>=b a greater than or equal to b

An expression using theselational operatorgyields the value if the specified relation
is falsg or the value if it is true.

All the relational operators have the same precedence. Relational operators have lower
precedence than arithmetic operators.

The following examples illustrate the implications of this precedence rule:

a<foo-1 /I this expression is the same as
a<(foo-1) /I this expression, but . . .
foo-(1<a) /I this one is not the same as
foo-1<a [lthis expression

Version 1.4 Verilog-AMS Language Reference Manual 4-5

Operators Expressions

Whenfoo - (1 < a)evaluates, the relational expression evaluates first and then either zero
or one is subtracted frofeo. Whenfoo - 1 < aevaluates, the value @b operand is
reduced by one and then compared with

4.1.6 Equality operators

Theequality operatorsank lower in precedence than the relational operators. Table 4-
9 lists and defines the equality operators.

Table 4-9 : The equality operators defined

a== b a equal to b,

al= b a not equal to b,

Both equality operators have the same precedence. These operators compare the value
of the operands. As with the relational operators, the result witlibeomparison fails,
1 if it succeeds.

4.1.7 Logical operators

The operatortogical and(&&) andlogical or (|]) are logical connectives. The result of
the evaluation of a logical comparison caniiqeefined agrue), oro (defined adalse.
The precedence @& is greater than that ¢f and both are lower than relational and
equality operators.

A third logical operator is the unalygical negationoperator. The negation operator
converts a non-zero or true operand into 0 and a zero or false operand into 1.

The following expression performs a logical and of three sub-expressions without
needing any parentheses:

a < paraml && b != c && index = lastone

However, it is recommended for readability purposes that parentheses be used to show
very clearly the precedence intended, as in the following rewrite of the above example:

(a < paraml) && (b != c) && (index != lastone)

4.1.8 Bit-wise operators

Thebit-wise operatorperform bit-wise manipulations on the operands—that is, the
operator combines a bit in one operand with its corresponding bit in the other operand to
calculate one bit for the result. The logic tables below show the results for each possible
calculation.

Version 1.4 Verilog-AMS Language Reference Manual 4-6

Operators Expressions

Table 4-10 : Bit-wise binary and Table 4-12 : Bit-wise binary exclusive
6perator or operator
& 0| 1 " 0l 1
0 0 0 0 0 1
1 0 1 1 110
Table 4-11 : Bit-wise binary or Table 4-13 : Bit-wise binary exclusive
dperator nor operator
N~
| o 1 o 1
~N
0 1
° 110
0
1 1
: 0 1
1

Table 4-14 : Bit-wise unary negation operator

4.1.9 Shift operators

Theshift operators<< and>>, perform left and right shifts of their left operand by the
number of bit positions given by the right operand. Both shift operators fill the vacated
bit positions with zeroes. The right operand is always treated as an unsigned number.

Version 1.4 Verilog-AMS Language Reference Manual 4-7

Operators Expressions

integer start, result;
analog begin

start = 1,

result = (start << 2);
end

In this example, the register result is assigned the binary value 0100, which is 0001
shifted to the left two positions and zero filled.

4.1.10 Conditional operator

Theconditional operatoralso known asernary operatoy is right associative and must

be constructed using three operands separated by two operators with the following
syntax:

conditional_expression ::=
expressionP expression2 expression3

Figure 4-1: Syntax for conditional operator

The evaluation of a conditional operator begins with the evaluation of expressionl. If
expressionl evaluates to false (0), then expression3 is evaluated and used as the result of
the conditional expression. If expressionl evaluates to true (value other than 0), then
expression2 is evaluated and used as the result.

4111 Event or

The evenbr operator performs an or of events. See section 6.7.2 for events and
triggering of events.

4112 Concatenations

A concatenation is used for joining scalar elements into compound elements (buses or
arrays) for the built-in types afiteger or real or elements declared of type node. The
concatenation shall be expressed using the brace chafaamells with commas

separating the expressions within.

Example:

Version 1.4 Verilog-AMS Language Reference Manual 4-8

Built-In Mathematical Functions Expressions

module x;
parameter real p1[0:2] = { 1.0, 2.0, 3.0 };

endmodule

module y;
parameter real polel = 0, pole2 = 0, pole3 = 0;
x #(.p1({polel, pole2, pole3}) x1;

endmodule

Modulex defines a real-array parameper Moduley instantiates and overrides the
array value of the parameterof modulex via the concatenation of the scalar parameters
polel, pole2, andpoleld

Concatenations can be expressed using a replication multiplier as shown in the following
example:

{c, {2{a, b}}} // equivalent to: {c, a, b, a, b}
The replication multiplier must be a constant expression.

4.2 Built-In Mathematical Functions

Verilog-AMS HDL supports the following standard mathematical functions.

42.1 Standard Mathematical Functions

These are the standard mathematical functions supported by Verilog-AMS HDL. The
operands must be numeric (integer or real).rfior(), max(), andaby), if either

operand is real, both are converted to real, as is the result. All other arguments are
converted to real.

Function Description Domain
In(X) Natural logarithm x>0
log(x) Decimal logarithm x>0
exp(X) Exponential x< 80
sqrt(x) Square root x=0
min(X, y) Minimum All x, all'y
max(x, y) Maximum All'x, ally
abgx) Absolute Allx

Version 1.4 Verilog-AMS Language Reference Manual 4-9

Built-In Mathematical Functions Expressions

Function Description Domain

pow(X, Y) Power.xY ifx>=0, ally;
if x <0, int(y)

floor (x) Floor All x

ceil(x) Ceiling All x

The min(), max(), and abs() functions have discontinuous derivatives, and it is necessary
to define the behavior of the derivative of these functions at the point of the
discontinuity. In that context, these functions are defined such that

min(Xx,y) is equivalent toX<y) ?x:y
max(x,y) is equivalent toX>y) ?x:y
abgqx) is equivalent tox(> 0) x : —x

4272 Transcendental Functions

These are the trigonometric and hyperbolic functions supported by Verilog-AMS HDL.
All operands must be of the numeric typadger or real) and are converted to real if
necessary.

All arguments to the trigonometric and hyperbolic functions are specified in radians.

Version 1.4

Function Description Domain
sin(x) Sine All x
co9X) Cosine Allx
tan(x) Tangent X % n%T% nis odd
asin(x) Arc-sine -1< x; 1
acogXx) Arc-cosine -1<x<1
atan(x) Arc-tangent Allx
atan2(x,y) Arc-tangent of/y All x, All 'y
hypot(xy) |5+ Y All x, All y
sinh(x) Hyperbolic sine x < 80
cosh(x) Hyperbolic cosine X< 80
tanh(x) Hyperbolic tangent Alk

Verilog-AMS Language Reference Manual

4-10

Signal Access Functions Expressions

Function Description Domain
asinh(x) Arc-hyperbolic sine Al
acosh(x) Arc-hyperbolic cosine |x=>1
atanh(x) Arc-hyperbolic tangent |-1<x<1

| 423 Error Handling

All math functions not defined for any input must report an error.

4.3 Signal Access Functions

Access functions are used to access signals on nodes, ports, and branches. There are twc
types of access functionsignal access functiorendport access functian The name
of the access function for a signal is taken from the discipline of the node, port, or branch

| to which the signal or port is associated and utilizes the fungjionperator. A port
access function also takes its name from the discipline of the port to which it is associated
| but utilizes the port acces&®)" operator. If the signal or port access function is used in

an expression, the access function returns the value of the signal. If the signal access

function is being used on the left side of a branch assignment or contribution statement,
it assigns a value to the signal. A port access function cannot be used on the left side of
a branch assignment or contribution statement.

The following table shows how access functions can be applied to branches, nodes, and
ports. In this tableh1 refers to a brancim1 andn2 represent either nodes or ports, and
plrepresents a port. These branches, nodes, and ports are assumed to belong to the
electrical discipline where V is the name of the access function for the voltage
(potential), and | is the name of the access function for the current (flow).

Example Comments

V(bl) Accesses the voltage across branth

V(nl) Accesses the voltage 0t (a node or a port) relative to ground
V(n1,n2) Accesses the voltage difference betwekandn2 (nodes or ports)
V(p1,pl) Error

I(b1) Accesses the current on brardh

I(n1) Accesses the current flowing frarth (a node or port) to ground
I(n1, n2) Accesses the current flowing betwag&mandn?2

Version 1.4 Verilog-AMS Language Reference Manual 4-11

Analog Operators

4.4

44.1

Version 1.4

Expressions

Example Comments
I(p1, pl) Error
I(<p1>) Accesses the current flow into the module throughpdort

The argument expression list for signal access functions must be a branch identifier, or
a list of one or two node or terminal expressions. If two node expressions are given as
arguments to an access function, they must not be the same expressions.The node
identifiers must be scalar or resolve to a constant node of a composite node type (array
or bus) accessed by a constant expression. The operands of an expression must be unique
to define a valid branch. The access function name must match the discipline declaration
for the nodes, ports, or branch given in the argument expression list. In this case, V and

| were used as examples of access functions for electrical potential and flow.

For port access functions, the expression list is a single port of the module. The port
identifier must be scalar or resolve to a constant node of a bus port accessed by a constant
expression. The access function name must match the discipline declaration for the port
identifier.

Analog Operators

Analog operators are functions that operate on more than just the current value of their
arguments. Rather, they maintain internal state and their output is a function of both the
input and the internal state.

Analog operators operate on an expression and return a value.

Analog operators are also referred to as filters. They include the time derivative, time
integral, and delay operators from calculus. They also include the transition and slew
filters, that are used to remove discontinuity from piecewise constant and piecewise
continuous waveforms. Finally they include more traditional filters, such as those
described with Laplace and Z-transform descriptions.

One special analog operator is timexp() function, which is a version of thexp()
function with built-in limits that improves convergence.

Restrictions on analog operators

Analog operators are subject to several important restrictions because they maintain
internal state.

Analog operators must not be used inside conditional statenieatgitase and
looping for andgeneratg unless the conditional expression that controls the
statement consists of terms that cannot change their value during the course of an
analysis. In particular, the conditional expression can only consist of literal

Verilog-AMS Language Reference Manual 4-12

Analog Operators Expressions

numerical constants, genvar variables, parameter values, aaukilysig)
function.

* Analog operators are not allowed in tiepeat andwhile loop statements.

» Analog operators can only be used insidaaalogblock; can not be used inside
aninitial or analwaysblock. They cannot be used inside a user defined function.

* ltisillegal to specify a null argument in the argument list of an analog operator.

These restrictions are present to prevent use that would cause the internal state to be
corrupted or become out-of-date, which results in anomalous behavior.

4.4.2 Vector or Array Arguments to Analog Operators

Certain analog operators require passing of arrays or vectors as parameters (Laplace and
Z transform filters, andoise_tablg. The array can be passed as either:

e array_identifier

+ const_array_expression

Theconst_array_expressicallows the arrays to be passed within the argument list
without explicit declaration of the array object.

The syntax is as follows:

constant_array_expression ::=

{ constant_arrayinit_element_list
constant_arrayinit_element_list

| constant_arrayinit_elementdonstant_arrayinit_element }

constant_arrayinit_element ::=
| constant_expression
| integer constant_expressignconstant_expressign

Figure 4-2: Syntax for constant array expression

443 Analog Operators and Equations

Generally, simulators formulate the mathematical description of the system in terms of
first-order differential equations and solve them numerically. There is no direct way to
solve a set of nonlinear differential equations so iterative approaches are used. When
using iterative approaches, one must have criteria used to determine when the algorithm
is close enough to the solution to stop the iteration. Tolerances are used for this purpose.
Thus, each equation, at minimum, must have a tolerance defined and associated with it.

Version 1.4 Verilog-AMS Language Reference Manual 4-13

Analog Operators Expressions

Occasionally, analog operators require that new equations and new unknowns be
introduced by the simulator to convert a module description into a set of first-order
differential equations. In this case, the simulator will attempt to determine from context
which tolerance should be associated with the new equation and new unknown.
Alternatively, these operators allow tolerances to be specified.

Specifying natures directly enforces reusability and allows other signal attributes to be
accessed by the simulator.

4.4.4 Time Derivative Operator

Theddt operator computes the time derivative of its argument.

Operator Example Comments
ddt ddt(x) Returns%x(t) , the time-derivative &f

ddt(x, absto) |Same as above, except absolute
tolerance is specified explicitly.

ddt(x, naturg [Same as above, except nature is
specified explicitly.

In DC analysisddt() returns zero. The optional parameadastolis used as an absolute
tolerance if needed. Whether an absolute tolerance is needed depends on the context in
which ddt is used. See section 4.4.3 for more information on the application of
tolerances to equations. The absolute tolerasostolor derived frommature applies to

the output of theldt operator, and is the largest signal level that is considered negligible.

445 Time Integral Operator

Theidt operator computes the time-integral of its argument.

Operator Example Comments

idt idt (x) Returns,x(t)dt , the time-integral
of x from O tot with the initial
condition being computed in the DC
analysis.

idt(xic) Returnsj‘ox(t)dr +ic , the time-
integral”ofx from O tot with initial
conditionic. In DC analysisic is
returned.

Version 1.4 Verilog-AMS Language Reference Manual 4-14

Analog Operators

Expressions

Operator

Example

Comments

idt(x,ic,assent

Returnjt x(t)dt +ic , the time-
integral ofx from t, to t with initial
conditionic. Asseris a integer-valued
expressionidt returnsic whenassert
IS nonzerot, is the time whemssert
last became 0.

idt(x,ic,assert,abstfl

Same as above, except absolute
tolerance is specified explicitly.

idt(x,ic,assert,natune

Same as above, except nature is
specified explicitly.

When specified with initial conditions, thét () operator returns the value of the initial
condition in DC and IC analyses and wheneassertis given and is nonzero. Without
initial conditions,idt multiplies its argument by infinity in DC analysis. Hence, without
initial conditions, it must be used in a system with feedback that forces its argument to
zero. The optional parametabstolor natureis used to derive an absolute tolerance if
needed. Whether an absolute tolerance is needed depends on the context idiwkich
used. See section 4.4.3 for more information. The absolute tolerance applies to the input
of theidt operator and is the largest signal level that is considered negligible.

4.4.6 Circular Integrator Operator

Theidtmod operator, also called thoércular integrator, converts an expression
argument into its indefinitely integrated form similaidb operator.

Operator Example Comments
idtmod idtmod (X) Returnfrr0 X(t)dt , the time-integral
of x from O tot with the initial
condition being computed in the DC
analysis.
idtmod (x,ic) Retumsj‘ox(r)dr +ic , the time-

Version 1.4

integral“ofx from 0 tot with initial
conditionic. In DC analysisic is
returned.

Verilog-AMS Language Reference Manual 4-15

Analog Operators

Expressions

Operator Example Comments

idtmod(x,ic,moduluy Returns k, where 0 <=k < modulus
and k is such that]'t x(r)dr +ic =
n* modulus + k, . -3,-2,-
1,0,1,2,3....

idtmod(x,ic,modulus, Returns k, whereffset <= k <
offse) offset + modulus and k is such
thaﬁ) X(t)dt +ic =n*modulus + k

idtmod (x,ic,assert, Same as above, except absolute
absto) tolerance is specified explicitly.
idtmod(x,a,assert, Same as above, except nature is
nature specified explicitly.

Version 1.4

The initial condition is optional. If the initial condition is not specified, it defaults to zero.

If idtmod is used in a system with feedback configuration that fasqes$o zero, the

initial condition can be omitted without any unexpected behavior during simulation. For
example, an operational amplifier alone needs an initial condition, but the same amplifier
with the right external feedback circuitry does not need that forced DC solution.

The initial condition shall force the DC solution to the system.
The output of thedtmod function shall remain in the range
offset <=idtmod < offset+modulus

Themodulusshall be an expression that evaluates to a positive value. If the modulus is
not specified, therdtmod shall behave likélt, and perform no limiting on the output
of the integrator.

The default fowffset shall be zero.
The following relationship betweedt andidtmod shall hold at all times.
Let

=idt(expr, ic) ;
=idtmod(expr, ic, modulus, offset) ;
Then
y =n*modulus + z ; /I ks an integer
where

offset< z < modulus + offset

Verilog-AMS Language Reference Manual 4-16

Analog Operators Expressions

In this example, the circular integrator is useful in cases where the integral can get very
large, such as a VCO. In a VCO we are only interested in the output values in the range
[0,2r1,

phase sdtmod(fc + gairtV(IN), 0, 1, 0);
V(OUT) <+ sin(20M_PICphase);
In the example above, the circular integrator returns a value in the range [0,1].

4.4.7 Delay Operator
delay implements transport delay for continuous waveforms (usedhstion operator
to delay discrete-valued waveforms). The general form is:

delay(input, td | maxdelay])

inputis delayed by the amouttt In all casesd must be a positive number. If the
optionalmaxdelayis specified theitd can vary, but it shall be an error if it becomes
larger tharmaxdelay If maxdelayis not specified, changestibshall be ignored. If
maxdelayis specified, changes to it are ignored and initial valuaax{delayis used.

In DC and operating point analyseslay() returns the value of iisput

In AC and other small-signal analyses, the delay operator phase-shifts the input
expression to the output of the delay operator according to the following:.

Outpu(w) = Input(w) &'
In time-domain analyses, delay introduces a transport delay equal to the instantaneous
value oftd according to the following:
Output(§ = Input(max ttd, 0))

The transport delay, td, can be either constant (typical case) or vary as a function of time
whenmaxdelayis defined. A time-dependent transport delay is illustrated below with a
ramp input to the delay operator for both positive and negative changes in the transport
delaytd and amaxdelayof 5.

Version 1.4 Verilog-AMS Language Reference Manual 4-17

Analog Operators Expressions

From time O until 2s, the output remains at input(0). With a delay of 2s, the output then
starts tracking the input(t - 2). At 3s, the transport delay changes from 2s to 4s, switching
the output back to input(0) since input(max(t-td,0)) returns 0. The output remains at this
level until 4s when it once again starts tracking the inputfitc= 0. At 5s thetransport

delay goesto 1s, and the output correspondingly jumps from its current value to the value
defined by input(t - 1).

448 Transition Filter

transition smooths out piece-wise constant waveforms. The transition filter is used to
imitate transitions and delays on digital signals. (For non-piecewise-constant signals see
slew). This function provides controlled transitions between discrete signal levels by
setting the rise time and fall time of signal transitioimansition stretches instantaneous
changes in signals over a finite amount of time, as shown below, and can delay the
transitions

input_expression(t) output_expression(t)

! b P
| \ [3
tO tO r f

The general form is
transition (expression [, delay [, rise_time [, fall_time [, Timetol]]]])
transition takes the following arguments (all real-valued expressions):

* The input expression

Version 1.4 Verilog-AMS Language Reference Manual 4-18

Analog Operators

Version 1.4

Expressions

* The delay time (must be nonnegative)

* The rise time (must be greater than or equal to 0)
* The fall time (must be greater than or equal to 0)
* The Timetol (must be positive)

The input expression is expected to evaluate over time to a piecewise constant
waveform. When appliedransition forces all positive transitions ekpressiono
occur overise_timeand all negative transitions to occuifati_time, after an initial
delay ofdelay. Thus,delaymodels transport delay ande_timeandfall_time model
inertial delay.

transition returns aeal number that over time describes a piecewise linear function. If
Timetolis not specified, the transition function causes the simulator to place time-points
at both corners of a transition to assure that each transition is adequately resolved. If
Timetolis specified, the transition function causes the simulator to place time-points at
both corners of a transition.

delay, rise_timgfall_time,andTimetolare optional. Ifdelayis not specified, it is taken
to be zero. If only a positivese_timevalue is specified, the simulator uses it for both
rise and fall times. If neither rise nor fall time are specified or are equaldndTimetol

is specified, the rise and fall time are taken tollmetol If neither rise nor fall time are
specified or are equal to 0, amgnetolis not specified, the rise and fall time are taken
to be1.

The rationale for this behavior is that the default behavior is chosen to approximate the
ideal behavior of a zero duration transition. Forcing a zero duration transition is
undesirable because it may cause convergence problems. Instead, a negligible, but
nonzero, transition time is used. The small nonzero transition time allows the simulator
to shrink the timestep small enough to experience a smooth transition if necessary to
avoid convergence problems. The transition time complier directive provides what is

Input to transition filter

Response of transition filter
with transition times specified

/ \ Response of transition filter
, \ with transition times defaulted

considered a negligible transition time. The simulator does not force a time point at the
trailing corner of a transition to avoid causing the simulator to take very small time steps,
which would result in poor performance.

Verilog-AMS Language Reference Manual 4-19

Analog Operators Expressions

Version 1.4

In DC analysisfransition passes the value of tlexpressiordirectly to its output. The
transition filter is designed to smooth out piecewise constant waveforms. When applied
to waveforms that vary smoothly, the simulation results are generally unsatisfactory. In
addition, applying the transition function to a continuously varying waveform can cause
the simulator to run slowly. Usieansition for discrete signals anslewfor continuous
signals.

If interrupted on a rising transitiotransition tries to complete the transition in the
specified time.

* Ifthe new final value level is below the value level at the point of the interruption
(the current value}ransition uses the old destination as the origin.

» If the new destination is above the current level, the first origin is retained.

In the following example, a rising transition is interrupted near its midpoint, and the new
destination level of the value is below the current value. For the new origin and
destinationtransition computes the slope that completes the transition from the origin
(not the current value) in the specified transition time. It then uses the computed slope to
transition from the current value to the new destination.

New origin h Original destination

output_expression(t)

Interruption

With different delays, it is possible for a new transition to be specified before a
previously specified transition starts. The transition function handles this by deleting any
transitions that would follow a newly scheduled transition. A transition function can
have an arbitrary number of transitions pending. A transition function can be used in this
way to implement transport delay for discrete-valued signals.

Because the transition function cannot be linearized in general, it is not possible to
accurately represent a transition function in AC analysis. The AC transfer function is
approximately modeled as having unity transmission for all frequencies in all situations.
Because the transition function is intended to handle discrete-valued signals, the small
signals present in AC analysis rarely reach transition functions. As a result, the
approximation used is generally sufficient.

Verilog-AMS Language Reference Manual 4-20

Analog Operators Expressions

4.48.1 QAM Modulator

In this example, the transition function is used to control the rate of change of the
modulation signal in a QAM modulator.

module gam16(out, in) ;

parameter freq=1.0, ampl=1.0, dly=0, ttime=1.0/freq ;
input [0:4]in;

output out ;

electrical [0:4] in;

electrical out ;

real x, vy ;

integer row, col ;

analog begin
row = 2*(V/(in[3]) > thresh) + (V(in[2]) > thresh) ;
col = 2*(V(in[1]) > thresh) + (V(in[0]) > thresh) ;
X =transition (row - 1.5, dly, ttime) ;
y =transition(col - 1.5, dly, ttime) ;
V(out) <+ ampl*x*cog2*‘M_PI *freq* $realtime)

+ ampl*y*sin(2*‘M_PI *freq* $realtime) ;

bound_stef0.1/freq) ;

end

endmodule

4.48.2 A-D Converter

The following example, an analog behavioral N-bit analog to digital converter,
demonstrates the ability of the transition function to handle vectors.

module adc(in, clk, out) ;
parameter bits = 8, fullscale = 1.0, dly = 0, ttime = 10n ;
input in, clk ;
output [0:bits-1] out ;
electrical in, clk;
electrical [0:bits-1] out;
real sample, thresh ;
integer result[0:bits-1];
genvari;

analog begin
@(crosqV(clk)-2.5, +1))begin
sample = V(in);
thresh = full_scale/2.0;

for (i=bits-1;i>=0;i=i-1)begin
if (sample > thresHegin
result[i] = 1.0;

sample = sample - thresh ;
end else begin

result[i] = 0.0;
end
sample = 2.0*sample;

Version 1.4 Verilog-AMS Language Reference Manual 4-21

Analog Operators Expressions

4.4.9

Version 1.4

end
end
for (i=0;i<bits; i =i+ 1)begin
V(out) <+transition (result[i], dly, ttime);
end
end
endmodule

Slew Filter

Theslewanalog operator bounds the rate of change (slope) of the waveform. A typical
use forslewis generating continuous signals from piecewise continuous signals. (For

discrete-valued signals, sgansition.) The general form is

slew(expression [, max_pos_slew _rate [, max_neg_slew rate]])
slewtakes the following arguments (adlal numbers):

* The input expression
* The maximum positive slew rate
* The maximum negative slew rate

When appliedslewforces all transitions a#xpressiorfaster thammax_pos_slew_rate
to change anax_pos_slew_ratete for positive transitions and limits negative
transitions tanax_neg_slew_ratete

output_expression(t)

Ay
At = Fatepmax

The two rate values are optionalax_pos_slew_rateust be greater

than 0 andnax_neg_slew_rataust be less than 0. If only one rate is specified, its
absolute value is used for both rates. If no rates are spesigefyasses the signal
through unchanged. If the rate of changexgressions less than the specified
maximum slew rateslewreturns the value agéxpressionin DC analysisslewsimply
passes the value of the destination to its output. In AC small-signal analysdewthe
function has unity transfer function except when slewing, in which case it has zero
transmission through the function.

Verilog-AMS Language Reference Manual 4-22

Analog Operators Expressions

4.4.10 Last_Crossing Function

Related to the cross function, tlest_crossingfunction returns a real value representing
the simulation time when a signal expression last crossed 0.

The general form is

last_crossing expression, direction) ;

Thedirectionflag is interpreted in the same way as withdressfunction. The
last_crossingfunction is subject to the same usage restrictions agdssfunction.

Thelast_crossingfunction does not control the timestep to get accurate results, and uses
linear interpolation to estimate the time of the last crossing. However, it can be used with
thecrossfunction for improved accuracy.

The following example measures the period of its input signal using cross and
last_crossingfunctions.

module period(in) ;
input in ;
voltage in ;
integer crossings ;
real latest, previous ;

analog begin
@(initial_step) begin
crossings =0 ;
previous =0 ;
end

@(crosqV(in), +1)) begin
crossings = crossings + 1 ;
previous = latest ;

end

latest =last_crossingV(in), +1) ;

@(final_step) begin
if (crossings < 2)
$strobg("Could not measure period.") ;
else
$strobg("period = %g, crossings = %d",
latest-previous, crossings) ;
end
end
endmodule

Before the expression crosses zero for the first timdaghhecrossingfunction returns
a negative value.

4.4.11 Laplace Transform Filters

The Laplace transform filters implement lumped linear continuous-time filters. Each
filter takes an optional parametgrwhich is a real number or a nature used for deriving

Version 1.4 Verilog-AMS Language Reference Manual 4-23

Analog Operators Expressions

an absolute tolerance if needed. Whether an absolute tolerance is needed depends on the
context in which the filter is used.

44111 laplace_zp
laplace_zpimplements the zero-pole form of the Laplace transform filter.

laplace_zgexpr, {, P [, €])

where((zeta) is a vector dfl pairs of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary patrt.
Similarly, p (rho) is the vector oN real pairs, one for each pole. The poles are given in
the same manner as the zeros. The transfer function is

whereZ, andj, are the real and imaginary parts okthe zero, pjhile pjand are
the real and imaginary parts of tk& pole. If aroot (a pole or zero) is real, the imaginary
part must be specified as 0. If a root is complex, its conjugate must also be present. If a
root is zero, then the term associated with it is implementedadiser than(1—-s/r)
wherer is the root.

4.411.2 laplace_zd
laplace_zdimplements the zero-denominator form of the Laplace transform filter.

laplace_zdexpr,(, d[, €])

where((zeta) is a vector dfl pairs of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary patrt.
Similarly, d is the vector oN real numbers that contains the coefficients of the
denominator. Its transfer function is

Version 1.4 Verilog-AMS Language Reference Manual 4-24

Analog Operators Expressions

wherlek and] are the real and imaginary parts okthe zero, dhile is the
coefficient of thek!" power o§in the denominator. If a zero is real, the imaginary part
must be specified as 0. If a zero is complex, its conjugate must also be present. If a zero
is zero, then the term associated with it is implementsdater than(l-s/() .

4.4.11.3 laplace_np

laplace_npimplements the numerator-pole form of the Laplace transform filter.

laplace_npexpr,n P [, €])

wheren is a vector oM real numbers that contains the coefficients of the numerator.
Similarly, p (rho) is a vector oN pairs of real numbers. Each pair represents a pole, the

first number in the pair is the real part of the pole, and the second is the imaginary part.
The transfer function is

M-1

k
Z nes
H(s) = g—*=2

1
G__s 0
J 0 o +jplH

wheren, is the coefficient of theth power sfn the numerator, whilp, andj, are

the real and imaginary parts of th&? pole. If a pole is real, the imaginary part must be
specified as 0. If a pole is complex, its conjugate must also be present. If a pole is zero,
then the term associated with it is implementedrasher than(1-s/p) .

4.4.11.4 laplace_nd

laplace ndimplements the numerator-denominator form of the Laplace transform filter.

laplace_ndexpr, n, d[, €])

wheren is an vector oM real numbers that contains the coefficients of the numerator,

andd is a vector ol real numbers that contains the coefficients of the denominator. The
transfer function is

M
Z nksk

H(s) = &20—

> s
k=0

Version 1.4 Verilog-AMS Language Reference Manual 4-25

Analog Operators

44115

4412

Version 1.4

Expressions

wheren, is the coefficient of thé" powersih the numerator, and, is the
coefficient of thek!h power ain the denominator.

Examples

V(out) <+ laplace_zgV(in), {-1,0}, {-1,-1,-1,1});
implements

l+s

PPN

H(s) =

and,
V(out) <+ laplace_ndV(in), {0,1}, {-1,0,1});
implements
S
s?2-1

H(s) =

Finally, this example
V(out) <+ laplace_zgwhite_noise(k), , {1,0,1,0,-1,0,-1,0});
implements a band-limited white noise source as

Z-Transform Filters

TheZ-transform filters implement linear discrete-time filters. Each filter supports the a
parametefl that specifies the sampling period of the filter. A filter with unity transfer
function acts like a simple sample-and-hold that samples @wsgonds and exhibits

no delay.

All Z-transform filters share three common argumeiits, andt,. T specifies the period

of the filter, is mandatory, and it must be positivepecifies the transition time, is
optional, and must be nonnegative. If the transition time is specified and is nonzero, the
timestep is controlled to accurately resolve both the leading and trailing corner of the
transition. If it is not specified, the transition time is taken to be one unit of time (as
defined by thétimescale compiler directive) and the timestep is not controlled to
resolve the trailing corner of the transition. If the transition time is specified as 0, then
the output is abruptly discontinuous. It is not recommended hdittar with O

transition time be directly assigned to a branch. Finglpecifies the time of the first
transition, and is also optional. If not given, the first transition occurdat

Verilog-AMS Language Reference Manual 4-26

Analog Operators

44.12.1

44.12.2

Version 1.4

Expressions

zi_zp

zi_zpimplements the zero-pole form of tAdransform filter.

zi_zpexpr,(, P, T[,T[,tg] 1)

where((zeta) is a vector dfl pairs of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary patrt.
Similarly, p (rho) is the vector oN real pairs, one for each pole. The poles are given in
the same manner as the zeros. The transfer function is

M-1
[1-7 (€k+igh
H(2) = =1

[1-Z" (e +ipk)
k=0

whereZ, andj, are the real and imaginary parts okthe zero, pfhile pjand are
the real and imaginary parts of tkl' pole. If aroot (a pole or zero) is real, the imaginary
part must be specified as 0. If a root is complex, its conjugate must also be present. If a

root is zero, then the term associated with it is implementedadiser than(1—-z/r) ,
wherer is the root.

zi_zd

zi_zdimplements the zero-denominator form of twansform filter.

zi_zdexpr,(, d, T[,T[,t]])

where((zeta) is a vector dfl pairs of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary part.
Similarly, d is the vector oN real numbers that contains the coefficients of the
denominator. Its transfer function is

M-1
[1-7"(k+ i)
H(z) = k=0

N-1
> dkz_k
k=0

wherlek and] are the real and imaginary parts okthe zero, dhile is the
coefficient of thek!" power o§in the denominator. If a zero is real, the imaginary part

Verilog-AMS Language Reference Manual 4-27

Analog Operators Expressions

must be specified as 0. If a zero is complex, its conjugate must also be present. If a zero
is zero, then the term associated with it is implementedatbher than(1-z/¢) .

44123 zi_np
zi_np implements the numerator-pole form of theansform filter.

zi_np(expr,np, T[,T[,t] 1)

wheren is a vector oM real numbers that contains the coefficients of the numerator.
Similarly, p (rho) is a vector oN pairs of real numbers. Each pair represents a pole, the

first number in the pair is the real part of the pole, and the second is the imaginary part.
The transfer function is

M-1
—k
Z Nz
H(z) = o—5*=2

[1-Z" (e +ipk)
k=0

wheren, is the coefficient of thkth power sfn the numerator, whil@rk angdl, are

the real and imaginary parts of th& pole. If a pole is real, the imaginary part must be
specified as 0. If a pole is complex, its conjugate must also be present. If a pole is zero,
then the term associated with it is implementedrasher thanl1—-z/p) .

44124 zi_nd
zi_nd implements the numerator-denominator form ofZtieansform filter.

zi_nd(expr, n, dT[,T[,t]])

wheren is an vector oM real numbers that contains the coefficients of the numerator,

anddis a vector oN real numbers that contains the coefficients of the denominator. The
transfer function is

wheren, is the coefficient of thé" powersih the numerator, and, is the
coefficient of thek!" power ofin the denominator.

Version 1.4 Verilog-AMS Language Reference Manual 4-28

Analog Operators Expressions

4.4.13 Limited Exponential

Thelimexp function is an operator whose internal state contains information about the
argument on previous iterations. It returns a real value that is the exponential of its single
real argument, however it internally limits the change of its output from iteration to
iteration in order to improve convergence. On any iteration where the change in the
output of thdimexp function is bounded, the simulator is prevented from terminating
the iteration. Thus, the simulator can only converge when the outjnesp equals

the exponential of the input. The general form is

limexp (expr)
The apparent behavior imexp is not distinguishable fromxp, except usingimexp
to model semiconductor junctions generally results in dramatically improved

convergence. There are different ways of implementing limiting algorithms for the
exponential.

4.4.14 Constant vs Dynamic Arguments

Some of the arguments to the analog operators described above and events described in
section 6 expect dynamic expressions and some expect their arguments to be constant
expressions. The dynamic expressions can be functions of circuit quantities and can
change during an analysis. The constant expressions remain static through out an
analysis.

Table 4-15 summarizes the arguments of the analog operators defined earlier.

Table 4-15 : Analog operator arguments

Constant expression Dynamic expression

Operator arguments arguments

ddt tol expr

idt tol expr, ic, assert
idtmod tol, modulus, offset expr, ic
Cross abstol, timetol expr, dir
last_crossing expr, dir

delay max_td expr, td

1. Laurence W. Nagel, "SPICE2: A computer program to simulate semiconductor
circuits," Memorandum No. ERL-M520, University of California, Berkeley, California,
May 1975.

W. J. McCallafFundamentals of Computer-Aided Circuit Simulatifuwer Academic
Publishers, 1988.

Version 1.4 Verilog-AMS Language Reference Manual 4-29

Analysis Dependent Functions Expressions

Table 4-15 : Analog operator arguments

Constant expression Dynamic expression

Operator arguments arguments
transition expr, td, tr, tf
slew expr, sr, sf
zi_zp zeros, poles, T, tO expr, t
zi_zd

zi_np

zi_nd

laplace_zp poles, tol, zero expr
laplace_zd

laplace_np

laplace_nd

bound_step expr

timer tstop, period
limexp expr

If a dynamic expression is passed as an argument that expects a constant expression, then
the value of the dynamic expression at the start of the analysis is taken to be the constant
value of the argument. Any further change in value of that expression is ignored during
the iterative analysis.

4.5 Analysis Dependent Functions

This section describes tl@alysisfunction, which is used to determine which type of
analysis is being performed. The remaining functions are used to implement small-signal
sources. The small-signal source functions only affect the behavior of a module during
small-signal analyses. The small-signal analyses provided by SPICE include the AC and
noise analyses, but others are possible. When not active, the small-signal source
functions return 0.

45.1 Analysis

The analysis function takes one or more string arguments and returns 1 if any argument
matches the current analysis type. Otherwise it returns 0.

Version 1.4 Verilog-AMS Language Reference Manual 4-30

Analysis Dependent Functions Expressions

analysiq analysis_list)
There is no fixed set of analysis types. Each simulator can support its own set. However,
simulators shall use the following types to represent analyses that are similar to those
provided by SPICE.

Name Analysis Description

“ac” AC analysis.

“dc” .OP or .DC analysis.

“noise” .NOISE analysis.

“tran” .TRAN analysis.

“ic” The initial-condition analysis that preceds a

transient analysis.

“static” Any equilibrium point calculation, including a
DC analysis as well as those that precede

another analysis, such as the DC analysis that
precedes an AC or noise analysis, or the IC
analysis that precedes a transient analysis.

“nodeset” The phase during an equilibrium point
calculation where nodesets are forced.

Any type names unsupported by a simulator are assumed to not be a match.

Table 4-16 describes the implementaion of the analysis function. Each column shows the
return value of the function. A statusiofepresents True adepresents False.

Table 4-16 Return Values for analysis functions

Analysis Argument Simulator Analysis Types
DC TRAN AC NOISE

OP TRAN UIC OP AC OPAC
First part of "static" "nodeset” 1 1 0 ? 1 g 1 0
Initial DC state "static" 1 1 0 ? 1 0 1 0
Inital condition "ic" 0 1 0 ?]1 0 O 0 0
Transfer function "dc" 1 0 O ?l 0 O 0 O
Transient "tran” 0 1 1 ? 0 O 0 O
Small-signal "ac" 0 0O O ? 1 1 0 O
Noise "noise" 0 0 O ?l 0 O 11

Version 1.4 Verilog-AMS Language Reference Manual 4-31

Analysis Dependent Functions Expressions

45.2

45.3

453.1

Version 1.4

Using theanalysisfunction, it is possible to have a module behave differently depending
on which analysis is being run. For example, it is possible to implement nodesets or
initial conditions using the analysis function and switch branches.
if (analysigq"ic"))
V(cap)<+ initial_value;
else
I(cap) <+ ddt(C*V(cap));

AC Stimulus

A small-signal analysis computes the steady-state response of a system that has been
linearized about its operating point and is driven by a small sinusoid. The sinusoidal
stimulus is provided using tlae_stimfunction.

ac_stim([analysis_name [, mag [, phasel]]])

The AC stimulus function returns 0 during large-signal analyses (such as DC and
transient) as well as on all small-signal analyses with names different from
analysis_namelhe name of a small-signal analysis is implementation dependent,
though it is expected that the name of the equivalent of a SPICE AC analysis will be
named “ac”, which is the default valueaalysis_nameNhen the name of the small-
signal analysis matchesalysis_namghe source becomes active and models a source
with magnitudemagand phas@hase The default magnitude is 1 and the default phase
is 0. Phase is given in radians.

Noise

Several functions are provided to support noise modeling during small-signal analyses.
To model large-signal noise during transient analyses, uskrdmelom() system task.

The noise functions are often referred to as noise sources. There are three noise
functions, one models white noise processes, another nigtletslicker noise

processes, and the last interpolates a vector to model a process where the spectral density
of the noise varies as a piecewise linear function of frequency. The noise functions are
only active in small-signal noise analyses, and return 0 otherwise.

white_noise

White noise processes are those whose current value is completely uncorrelated with any
previous or future values. This implies that their spectral density does not depend on
frequency. They are modeled using

white_noise(pwr [, name])

wherewhite _noisegenerates white noise with a powenofr. For example, the thermal
noise of a resistor could be modelled using

I(a,b) <+ V(a,b)/R +
white_nois€4 * ‘P_K * $temperature/R, "thermal");

Verilog-AMS Language Reference Manual 4-32

Analysis Dependent Functions Expressions

4532

45.3.3

45.3.4

4.5.35

Version 1.4

The optionahameargument acts as a label for the noise source that is used if the
simulator outputs the individual contribution of each noise source to the total output
noise. The contributions of noise sources with the same name from the same instance of
a module are combined in the noise contribution summary.

flicker_noise

Theflicker_noise function models flicker noise.

flicker_noise(pwr, exp [, name])
which generates pink noise with a powepefr at 1Hz that varies in proportion tiof €*P,
The optionahameargument acts as a label for the noise source that is used if the
simulator outputs the individual contribution of each noise source to the total output

noise. The contributions of noise sources with the same name from the same instance of
a module are combined in the noise contribution summary.

noise_table

Thenoise_tablefunction interpolates a vector to model a process where the spectral
density of the noise varies as a piecewise linear function of frequency.

noise_tablgvector [, name])

wherevectorcontains pairs of real numbers, the first number in each pair is the frequency
in Hertz, and the second is the power. Noise pairs are specified in the order of ascending
frequenciesnoise_tableperforms piecewise linear interpolation to compute the power
spectral density generated by the function at each frequency.

The optionahameargument acts as a label for the noise source that is used if the
simulator outputs the individual contribution of each noise source to the total output
noise. The contributions of noise sources with the same name from the same instance of
a module are combined in the noise contribution summary.

Noise model for diode

The noise of a junction diode could be modelled as follows:

I(a,c) <+ is*(exp(V(a,c) / (n *$vt)) - 1)
+ white_noisg2*'P_Q*I(<a>))
+ flicker_noise(kf* pow(abgl(<a>)), af), ef);

Correlated noise

Each noise function generates noise that is uncorrelated with the noise generated by other
functions. Perfectly correlated noise is generated by using the output of one noise
function for more than one noise source. Partially correlated noise is generated by
combining the output of shared and unshared noise functions.

Consider the case where two noise voltages are perfectly correlated:

Verilog-AMS Language Reference Manual 4-33

User defined functions Expressions

n =white_nois€pwr);
V(a,b)<+ cl*n;
V(c,d) <+ c2*n;
One can also model partially correlated noise sources:
nl =white_nois&1-corr);
n2 =white_nois&1-corr);
nl2 =white_nois€corr);
V(a,b)<+ Kv*(nl + n12);
I(b,c) <+ Ki*(n2 + n12);

4.6 User defined functions

The purpose of a user defined function is to return a value that is to be used in an
expression. All functions are defined within modules. Each function can be a digital
function (as defined ItEEE 1364-199bo0r an anolog function.

4.6.1 Defining an analog function

The syntax for defining an analog function is as follows:

analog_function_declaration ::=
analog function [type]function identifier ;
function_item_declaration { function_item_declaration }
statement
endfunction

type ::=
integer
| real

function_item_declaration ::=
input_declaration
| block_item_declaration

block_item_declaration ::=
parameter_declaration
| integer_declaration
| real_declaration

Figure 4-3: Syntax for an analog function declaration

An analog function declaration shall begin with the keywamdalog function, followed
by the type of the return value from the function, followed by the name of the function
and a semicolon, and shall end with the keywardfunction.

Version 1.4 Verilog-AMS Language Reference Manual 4-34

User defined functions Expressions

4.6.2

Version 1.4

typespecifies the return value of the function; its use is optidiygkecan be aeal or an
integer; if unspecified, the default igal.

An analog function:

e can use any statements available for conditional execusiea §.);

shall not use access functions,
« shall not use contribution statements or event control statements;

» shall have at least one input declared;
The block item declaration shall declare the type of the inputs as well as local
variables used in the function.

» shall not use named blocks; and
» shall only reference locally-defined variables or variables passed as arguments.

The following example defines an analog function caltegvalue which returns
potential of the node that is larger in magnitude.

analog function real maxValue;

input n1, n2 ;

real nl, n2;

begin
/I code to compare potential of two nodes
maxValue =(n1>n2)?nl:n2;

end

endfunction

Returning a value from an analog function

The analog function definition implicitly declares a variable, internal to the analog
function, with the same name as the analog function. This variable has the same type as
the type specified in the analog function declaration. The analog function definition
initializes the return value from the analog function by assigning the analog function
result to the internal variable with the same name as the analog function. This variable
can be read and assigned within the flow; its last assigned value is passed back on the
return call.

The following line (from the previous example) illustrates this concept:
maxValue = (n1>n2)?nl:n2;

An analog function definition must include an assignment of the analog function result
value to the internal variable that has the same name as the analog function name.

Verilog-AMS Language Reference Manual 4-35

User defined functions Expressions

4.6.3 Calling an analog function

An analog function call is an operand within an expression. The analog function call has
the following syntax:

analog_function_call ::=
function identifier (expression { expression }

Figure 4-4: Syntax for function call

The order of evaluation of the arguments to an analog function call is undefined.
An analog function:

» shall not call itself directly or indirectly, that is, recursive functions are not
permitted;

» shall only be called within an analog block; and
e can be called outside of their immediate scope.

The following example usesaxValuefunction defined in section 4.6.1

V(out) <+ maxValue(vall, val2) ;

Version 1.4 Verilog-AMS Language Reference Manual 4-36

Analog Signals Signals

Section 5
Signals

5.1 Analog Signals

Analog signals are distinguished from digital signals in that an analog signal must have
adisciplinewith continuous domain. Disciplines, nodes and branches are described in
Section 3, and ports are described in Section 8.

This section describes signal access mechanisms and operators in Verilog-AMS HDL.

51.1 Access Functions

Flows and potentials on nodes, ports, and branches are accessedagcgisg functions
The name of the access function is taken from the discipline of the node, port, or branch
associated with the signal.

For example, consider a named electrical brdmwhereelectricalis a discipline with
V as the access function for the potential bad the access function for the flow. The
potential (voltage) would be accessed with:

V(b)
and the flow (current) is accessed with
I(b)
Unnamed branches are accessed in a similar manner, except that the access functions are

applied to nodes or ports rather than branches (terminals of the branch). For example, if
nlandn2 are electrical nodes or ports, then

V(ni, n2)

creates an unnamed branch frofrto n2 if it does not already exist, and then accesses
the branch potential (or the potential difference betwdetio n2), and

V(nl)
does the same fromil to ground. In other words, accessing the potential from a node or
port to a node or port defines an unnamed branch. Accessing the potential on a single
node or port defines an unnamed branch from that node or pgtiuad. There can only
be one unnamed branch between any two nodes or ports.

An analogous access method is used for flows.
I(n1, n2)

creates an unnamed branch frofnto n2 if it does not already exist and then accesses
the branch flow, and

Version 1.4 Verilog-AMS Language Reference Manual 5-1

Analog Signals Signals

I(n1)
does the same froml to ground.

Thus, accessing the flow from a node or port to a node or port defines an unnamed
branch. Accessing the potential on a single node or port defines an unnamed branch from
that node or port tground.

It is also possible to access the flow passing through a port into a module. The name of
the access function is derived from the flow nature of the discipline of the port. However,
in this case "(<>)" is used to delimit the port name rather than "()". For example,

I(<p1>)
is used to access the current flow into the module through electrical port p1. This
capability is discussed further in section 5.1.4.

5.1.2 Probes and Sources

It is possible to interpret the behavioral descriptions in Verilog-AMS HDL as a network
of probes and controlled sources. While it is not necessary to do so, it is often helpful for
two reasons,

» Describe the component with a network of probes and controlled sources, and
then use the simple rules presented here to map the network into a behavioral
description.

» Often behavioral descriptions that are difficult to decipher can be more easily
understood if it is first converted into a network of probes and controlled sources.

One additional benefit of the probe/source interpretation is that it provides an
unambiguous way of defining the behavior for manipulating signals.

5121 Sources

A branch, either named or unnamed, soairce branclif either the potential or the flow

is assigned a value by a contribution statement anywhere in the module pibtisrgial
sourceif the branch potential is specified, and it ioav sourceif the branch flow is
specified. A branch cannot simultaneously be both a potential and a flow source, though
it can switch between them, in which case it is referred to as bsingch branch

Both the potential and the flow of a source branch are accessible in expressions
anywhere in the module. The models for potential and flow sources are shown below:

Version 1.4 Verilog-AMS Language Reference Manual 5-2

Analog Signals

51.2.2

5.1.3

Version 1.4

Signals

fis a probe that measures the flow through the branclp &snal probe that
measures the potential across the branch.

Figure 5-1: Equivalent circuit models for source branches.

Probes

If no value is specified for either the potential or the flow, the brancprnsie If the

flow of the branch is used in an expression anywhere in the module, the branibbws a
probe otherwise the branch iggatential probe Using both the potential and the flow

of a probe branch is considered illegal. The models for probe branches are shown below

- +—

¢f

Figure 5-2: Equivalent circuit models for probe branches.

The branch potential of a flow probe is zero. The branch flow of a potential probe is zero.

Examples

The following examples demonstrate how to formulate models and the correspondence
between the behavioral description and the equivalent probe/source model.

Verilog-AMS Language Reference Manual 5-3

Analog Signals Signals

For simplification, only the node or branch declarations and contribution statements are
shown.

5.13.1 The Four Controlled Sources
The model for a voltage controlled voltage source is.

branch (ps,ns) in;
branch (p,n) out;
V(out) <+ A * V(in);

The model for a voltage controlled current source is.
branch (ps,ns) in;

branch (p,n) out;
I(out) <+ A * V(in);

The model for a current controlled voltage source is.
branch (ps,ns) in;

branch (p,n) out;
V(out) <+ A * I(in);

The model for a current controlled current source is.

branch (ps,ns) in;
branch (p,n) out;
I(out) <+ A * I(in);

5.1.3.2 Resistor and Conductor
The model for a linear conductor is

branch (p,n) cond;
I(cond)<+ G * V(cond);

< +
®

Figure 5-3: Linear conductor model

The assignment tigcond)makesonda current source branch an@ond)simply accesses
the optional potential probe built into the current source branch.

Version 1.4 Verilog-AMS Language Reference Manual 5-4

Analog Signals

5.1.33

5134

Version 1.4

Signals

The model for a linear resistor is

|
branch (p,n) res; l
V(res)<+ R * I(res); <> R

Ri

Figure 5-4: Linear resistor model

The assignment ta(res) makesesa potential source branch aids) simply accesses
the optional flow probe built into the potential source branch.

RLC Circuits

A series RLC circuit is formulated by summing the voltage across the three components.

V() = Ri(t) + L%i(t) " é It_ooi(t)dt

It is described as
V(p, n) <+ R*I(p, n) + L*ddt(I(p, n)) +idt(I(p, n))/C;

A parallel RLC circuit is formulated by summing the currents through the three
components.

it) = "—gl +C%v(t) 0 v

It is described as
I(p, N) <+ V(p, n)/R + Cddt(V(p, n)) +idt(V(p, n))/L;

Simple Implicit Diode

Verilog-AMS HDL allows components to be described with implicit equations. In the
following example, which is a simple diode with a series resistor, the model is implicit
because the diode curregt c) appears on both sides of the contribution operator. The
current of the diode branch is specified, making it a flow source branch. In addition, both
the voltage and current of diode branch is used in the behavioral description.

I(a, c) <+ is*(limexp((V(a, c) — rs*I(a, c))/$vt) — 1);

Verilog-AMS Language Reference Manual 5-5

Analog Signals Signals

514 Port Branches

The port access function is used to access the flow into a port of a module. The name of
the access function is derived from the flow nature of the discipline of the port. However,
in this case "(<>)" is used to delimit the port name. For example,

I(<a>)
accesses the current through module @ort

As one example of how this capability might be used, considgurniecgon diodere-
written such that the total diode current is monitored and a message is issued if it exceeds
a given value:

module diode (a, c);

electrical a, c;

branch (a, c) i_diode, junc_cap;

parameter real is = 1e-14, tf = 0, cjo = 0, imax =1, phi=0.7 ;

analog begin
I(i_diode) <+ is*(limexp(V(i_diode)svt) — 1);
I(junc_cap) <+ddt(tf*I(i_diode) - 2*cjo*sqrt(phi*(phi*V(junc_cap))));
if (I(<a>) > imax)
$strobe("Warning: diode is melting!");
end
endmodule
The expression V(<a>) is invalid for ports and nodes, where V is a potential access
function. The port branch I(<a>) cannot be used on the left side of a contribution operator
<+.

5.15 Switch Branches

Source branches have the ability to switch between being potential and flow sources. To
switch a branch to being a potential source, assign to its potential. To switch a branch to
being a flow source, assign to its flow. This type of branch is useful when modeling ideal
switches and mechanical stops. The full circuit model for a branch is shown below

Version 1.4 Verilog-AMS Language Reference Manual 5-6

Analog Signals Signals

- +

Position of the switch depends on whether a potential or flow is assigned to the
branch.

Figure 5-5: Circuit model for a source branch.

An ideal relay (a controlled switch) can be implemented as

if (closed)
V(p,n) <+ 0;
else
I(p,n) <+ O;

A discontinuity of order zero is assumed to occur when the branch switches and so it is
not necessary to use thiscontinuity function with switch branches.

5.1.6 Unassigned Sources

If a value is not assigned to a branch, the branch flow is set to zero.
Consider
if (closed)
V(p,n) <+ 0;
This example is equivalent to
if (closed)
V(p,n) <+ 0;
else
I(p,n) <+ 0;

Version 1.4 Verilog-AMS Language Reference Manual 5-7

Signal Access for Vector Branches Signals

5.2

Version 1.4

Signal Access for Vector Branches

Verilog-AMS HDL allows ports, nodes, and branches to be arranged as vectors, however
the access functions can only be applied to scalars or individual elements of a vector. The
scalar element of a vector is selected with an index. For example,

V(in[1])
accesses the voltaggl].

The index must be a genvar expression. If the signal access occurs within the scope of a
looping construct, then the index expression may also reference variables declared as
genvars.

The following examples illustrate legal applications of access functions to elements of a
an analog signal vector or buss. In the N-bit DAC example, the access to the analog buss
'In' is done within via a genvar expression of the genvar variable 'i'. In the following
fixed-width DAC example, literal values are used to access elements of the buss directly.

I
/I N-bit DAC example.
I

module dac(out, in, clk);
parameter integer width = 8 from [2:24];
parameter real fullscale = 1.0, td = 1n, tt = 1n;
output out;
input [1:width] in;
input clk;
electrical out;
electrical [1:width] in;
electrical clk;

real aout;
genvari;

analog begin
@(crosqV(clk) - 2.5, +1))begin
aout = 0;
for (i=width-1;i>=0;i=i-1begin
if (V(in[i]) > 2.5) begin
aout = aout + fullscalpbw(2, width - i);
end
end
end
V(out) <+transition (aout, td, tt);
end
endmodule

I
/I 8-bit fixed-width DAC example.
I

Verilog-AMS Language Reference Manual 5-8

Signal Access for Vector Branches Signals

module dac8(out, in, clk);
parameter real fullscale = 1.0, td = 1n, tt = 1n;
output out;
input [1:8] in;
input clk;
electrical out;
electrical [1:8] in;
electrical clk;

real aout;

analog begin

@(crosqV(clk) - 2.5, +1))begin
aout = 0;
aout = aout + ((V(in[7]) > 2.5) ? fullscale/2.0 : 0.0);
aout = aout + ((V(in[6]) > 2.5) ? fullscale/4.0 : 0.0);
aout = aout + ((V(in[5]) > 2.5) ? fullscale/8.0 : 0.0);
aout = aout + ((V(in[4]) > 2.5) ? fullscale/16.0 : 0.0);
aout = aout + ((V(in[3]) > 2.5) ? fullscale/32.0 : 0.0);
aout = aout + ((V(in[2]) > 2.5) ? fullscale/64.0 : 0.0);
aout = aout + ((V(in[1]) > 2.5) ? fullscale/128.0 : 0.0);
aout = aout + ((V(in[0]) > 2.5) ? fullscale/256.0 : 0.0);

end

V(out) <+transition (aout, td, tt);
end

endmodule

The syntax for analog signal access is as follows:

Version 1.4 Verilog-AMS Language Reference Manual 5-9

Contribution statements Signals

5.3

53.1

Version 1.4

access_function ::=
bvalue
| pvalue
bvalue ::=
access_identifief analog_signal_lisk
analog_signal_list ::=
branch_identifier
| array_branch identifier [genvar_expression]
| node_or_port_scalarexpression
| node_or_port_scalardentifier ,node_or_port_scalandentifier
node_or_port_scalar_expression ::=
node_or_portidentifier
| array_node_or_portidentifier [genvar_expression |
| vector_node_or_poridentifier [genvar_expression]
pvalue ::=
flow_access_identifiex port_scalar_expression
port_scalar_expression ::=
port_identifier
| array_port identifier [genvar_expression]
| vector_portidentifier [genvar_expression |

Figure 5-6: Syntax for scalar selection of vector signals

Contribution statements

Verilog-AMS HDL defines théranch contribution operatof<+” for the description of

analog behavior. This operator is only valid within #iealog blockBranch contribution
statements are statements that use the branch contribution operators to describe behavior
in terms of a mathematical mapping of input signals to output signals.

Branch Contribution Statements

In general, a branch contribution statement consists of two parts, a left-hand side, and a
right-hand side separated by a branch contribution operator. The right-hand side can be
any expression that evaluates or can be promoted to a real value. The left-hand side
specifies the source branch signal that the right-hand side is to be assigned to. It must
consist of a signal access function applied to a branch. Hence, analog behaviors can be
described using:

V(n1, n2)<+ expression ;
or

Verilog-AMS Language Reference Manual 5-10

Contribution statements Signals

Version 1.4

I(n1, n2)<+ expression ;
where(n1, n2)represents an unnamed source branchyanch2)refers to the potential
on the branch whilgn1,n2)refers to the flow through the branch. The expression can be
linear, nonlinear, or dynamic in nature. The left-hand side can not use a port access
function.

This is illustrated in the following modules, which model a resistor and a capacitor.

module resistor(p, n);
electrical p, n;
parameter real r = 0;

analog
V(p,n) <+ r*l(p, n);
endmodule
module capacitor(p, n);

electrical p, n;
parameter real ¢ = 0;

analog
[(p,n) <+ c*ddt(V(p, n));

endmodule
Branch contribution statements implicitly define source branch relations. The branch is

directed from the first node of the access function to the second node. If the second node
is not specifiedground is taken as the reference node.

A branch relation is a path of the flow between two nodes in a module. Each node has
two signals associated with it—the potential of the node and the flow out of the node. In
electrical circuits, the potential of a node is its voltage, whereas the flow out of the node
is its current. Similarly, each branch has two signals associated with it—the potential
across the branch and the flow through the branch.

For example, the following module models a simple single-ended amplifier.
module amp(out, in);

input in;

output out;

electrical out, in;
parameter real gain = 1;

analog
V(out) <+ gain*V(in);

endmodule
For source branch contributions, the statement is evaluated as follows:

1. The simulator evaluates the right-hand side.

2. The simulator adds the value of the right-hand side to any previously retained
value for the branch for later assignment to the branch. If there are no previously
retained values, the value of the right-hand side itself is retained.

Verilog-AMS Language Reference Manual 5-11

Contribution statements Signals

3. Atthe end of the simulation cycle, the simulator assigns the retained value to the
source branch.

Parasitics are added to the above amplifier by simply adding additional contribution
statements to model the input admittance and output impedance.

module amp(out, in);
input in;
output out;
electrical out, in;
parameter real Gain =1, Rin =1, Cin =1, Rout = 1, Lout = 1;
analog begin
/I gain of amplifier
V(out) <+ gain*V(in);
/l model input admittance
I(in) <+ V(in)/Rin;
I(in) <+ Cin*ddt(V(in));
/l model output impedance
V(out) <+ Rout*I(out);
V(out) <+ Lout*ddt(I(out));
end
endmodule

Contributing a flow to a branch that already has a value retained for the potential results
in the potential being discarded and the branch being converted to a flow source.
Conversely, contributing a potential to a branch that already has a value retained for the
flow results in the flow being discarded and the branch being converted into a potential
source.

This is used to model switches, as shown in the following example:

module switch(p, n, cp, cn);
electrical p, n, cp, cn;
parameter real thresh = 0O;

analog begin
/I stop to resolve threshold crossings
@ (crosgV(cp,cn) - thresh, 0));

if (V(cp,cn) > thresh)
V(p,n) <+ 0;
else
I(p,n) <+ O;
end

endmodule
The syntax for source contribution statement is shown below:

Version 1.4 Verilog-AMS Language Reference Manual 5-12

Contribution statements Signals

branch_contribution ::=
bvalue<+ expression

Figure 5-7: Syntax for branch contribution

5.3.2 Indirect Branch Assignments

Verilog-AMS HDL allows descriptions that implicitly specify a branch voltage or
current in fixed-point form. The branch voltage or current is assigned a value by an
expression that uses the branch voltage or current. This occurred in the simple implicit
diode model above wherg,c)appeared on both sides of the contribution operator.

Consider the model for an ideal opamp. In this model, the output is driven to the voltage
that results in the input voltage being zero. The constitutive equation is

V(in)==0
This can be formulated as
V(out) <+ V(out) + V(in);

This statement defines the output of the opamp to be a controlled voltage source by
assigning to/(out) and defines the input to be high impedance by only probing the input
voltage. The desired behavior results because the description is formulated in such a way
that it reduces to(in) = 0. This approach does not result in the right tolerances being
applied to the equation ¢tit andin have different disciplines.

Verilog-AMS HDL includes a special syntax that is appropriate in this situation. The
above branch contribution can be rewritten usingeimect branch assignment

V(out): V(in) == 0;
which reads “findv(out) such that/(in) == 0" . It indicates thasut should be driven with
a voltage source and the source voltage should be such that the given equation is

satisfied. Any branches referenced in the equation are only probed and not driven. In
particular,v(in) acts as a voltage probe.

A complete description of an ideal opamp is shown below:
module opamp(out, pin, nin);
electrical out, pin, nin;

analog
V(out):V(pin,nin) == 0;

endmodule
The syntax for the indirect assignment statement is

Version 1.4 Verilog-AMS Language Reference Manual 5-13

Contribution statements Signals

indirect_branch_assignement ::=
target: equation

target ::=
bvalue

equation ::=
nexpr== expression

nexpr ::=
bvalue

| ddt(bvalue)

| idt (bvalue)

Figure 5-8: Syntax for indirect branch assignment

If there are multiple indirect assignments statements, it is often the case that the targets
can be paired with any equation. Consider the following ordinary differential equation,

dx _
vl f(x Y, 2
dy _
at =g(x Yy 2
dz _
T=h(x 2

which can be written as

V(x): ddt(V(x)) == f(V(x), V(y), V(2));
V(y): ddt(V(y)) == g(V(x), V(y), V(2));
V(2): ddt(V(z)) == h(V(x), V(y), V(2));

or

V(y): ddt(V(x)) == f(V(x), V(y), V(2));
V(2): ddt(V(y)) == g(V(x), V(y), V(2));
V(x): ddt(V(2)) == h(V(x), V(y), V(2));

or

V(2): ddt(V(x)) == f(V(x), V(y), V(2));
V(x): ddt(V(y)) == g(V(x), V(y), V(2));
V(y): ddt(V(2)) == h(V(x), V(y), V(2));

without affecting the results.

Version 1.4 Verilog-AMS Language Reference Manual 5-14

Contribution statements Signals

5.3.2.1 Indirect Assignment and Contribution

Indirect assignment is incompatible with contribution. Once a value is indirectly
assigned to a branch, it cannot be contributed to using the branch contribution operator

(<+).

Version 1.4 Verilog-AMS Language Reference Manual 5-15

Contribution statements Signals

Version 1.4 Verilog-AMS Language Reference Manual 5-16

Analog procedural block Analog Behavior

Section 6
Analog Behavior

The description of an analog behavior consists of setting up contributions (Section 5) for
various nodes under certain procedural or timing control. This section describes an
analog procedural block, procedural control statements and analog timing control
functions.

6.1 Analog procedural block

Discrete time behavioral definitions within Verilog HDL are encapsulated within the
initial andalways procedural blocks. Eveiyitial andalwaysblock starts a separate
concurrent activity flow. For continuous time simulation, the behavioral description is
encapsulated within trenalogprocedural block. Verilog-AMS HDL allows one analog
procedural block in a module definition.

Theanalogprocedural block defines the behavior as a procedural sequence of
statements. The conditional and looping constructs are available for defining behaviors
within theanalog procedural block. Because the description is a continuous-time
behavioral description, no blocking event control statements (such as blocking delays,
events or waits) are supported.

The statements allowed within the analog block (Figure 6.1) are separated into two
categories analog_statementndnon_analog_statemeniBheanalog_statementse
restricted to thanalogblock whereas theon_analog_statementan appear anywhere
within the module scope, including analogblock. The distinction is based upon the
visibility and usage of these behavioral constructs within a Verilog-AMS module
definition.

The syntax for analog block is as follows:

Version 1.4 Verilog-AMS Language Reference Manual 6-1

Block statements

Analog Behavior

analog_block ::=
analoganalog_statement

analog_statement ::=
null_statement
| analog_block_statement
| analog_branch_contribution
| analog_indirect_branch_assignment
| analog_procedural_assignment
| analog_conditional_statement
| analog_for_statement
| analog_case_statement
| analog_event_controlled_statement
| discontinuity_task
| bound_step_task
| system_task enable
| non_analogstatement
non_analogstatement ::=
| block_statement
| procedural_assignment
| conditional_statement
| loop_statement
| case_statement

6.2

Version 1.4

Figure 6-1: Syntax for analog procedural block

The statements within the analog block are used to define the continuous-time behavior
of the module. The behavioral description is a mathematical mapping of input signals to
output signals. The mapping is done with contribution statements of the form

signal<+ analog_expression ;
or indirect branch assignment. Taralog_expressiocan be any combination of linear,
nonlinear, or differential expressions of module signals, constants and parameters (see
Section 5).

All analog blocks contained in various modules in a design are considered to be
executing concurrent with respect to each other.

Block statements

Theblock statemenislso referred to asequential blocksare a means of grouping two

or more statements together so that they act syntactically like a single statement. The
block statements are delimited by the keywdrelgin andend. The procedural

statements in a block statement are executed sequentially in the given order.

Verilog-AMS Language Reference Manual 6-2

Procedural assignments Analog Behavior

The following is the formal syntax for sequential blocks:

block_statement ::=
begin[: block identifier { block_item_declaration }]
{ statement }
end

analog_block_statement ::=
begin[: block identifier { block_item_declaration }]
{ analog_statement }
end

block_item_declaration ::=
parameter_declaration
| integer_declaration
| real_declaration

Figure 6-2: Syntax for the sequential blocks

An analog_block_statemeis ablock_statementhat encapsulates one or more
analog_statements

6.2.1 Block names

A sequential block can be named by addingme_of_bloclafter the keywordbegin. The
naming of a block allows local variables to be declared for the block.

All local variables are static—that is, a unique location exists for all variables and
leaving or entering blocks do not affect the values stored in them.

The block names give a means of uniquely identifying all variables at any simulation
time.

6.3 Procedural assignments
In Verilog-AMS HDL, the branch contributions and indirect branch assignments are

used for modifying signals. The procedural assignments are used for modifying integer
and real variables. The syntax for procedural assignments are as follows:

Version 1.4 Verilog-AMS Language Reference Manual 6-3

Conditional statement Analog Behavior

6.4

Version 1.4

procedural_assignment ::=
lexpr= expression

analog_procedural_assignment ::=
lexpr= analog_expression

lexpr ::=
integer identifier
| real_identifier
| array_element

array_element ::=
integer identifier [expression
| real_identifier[expression

Figure 6-3: Syntax for procedural assignments

The left-hand side of a procedural assignment must be an integer or a real identifier or
an element of aninteger or real array. The right-hand side expression can be any arbitrary
expression constituted from legal operands and operators as described in Section 4.

An analog_procedural_assignméstdefined as a procedural assignment whose right-hand
sideexpressioris ananalog_expressioinvolving analog operators.

Conditional statement

Theconditional statemer(or if-elsestatement) is used to make a decision as to whether
a statement is executed or not. The syntax of a conditional statement is as follows:

conditional_statement ::=
if (expressior) true_statement
[elsefalse_statement]

Figure 6-4: Syntax of conditional statement

If the expression evaluates to true (that is, has a non-zero valu¢yéhestatemenwill
be executed. If it evaluates to false (has a zero valudgyutestatemenivill not be
executed. If there is aglsefalse statemerand expression is false, tfase statement
will be executed.

Since the numeric value of the if expression is tested for being zero, certain shortcuts are
possible. For example, the following two statements express the same logic:

Verilog-AMS Language Reference Manual 6-4

Case statement Analog Behavior

if (expression)

if (expression !=0)
Because the else part of ibrelseis optional, there can be confusion wherekseis
omitted from a nestedl sequence. This is resolved by always associatinglsesvith
the closest previous that lacks amrlse In the example below, thedsegoes with the
innerif, as shown by indentation.

if (index > 0)
if (i >])
result =1i;
else /I else applies to preceding if
result =j;
If that association is not desiredhagin-end block statememiust be used to force the
proper association, as shown below.

if (index > 0)begin
if (i>])
result =i;

end

elseresult = j;
Nesting of if statements (known asi&else-if construct) is the most general way of
writing a multi-way decision. The expressions are evaluated in order; if any expression
is true, the statement associated with it will be executed, and this will terminate the whole
chain. Each statement is either a single statement or a sequential block of statements.

6.4.1 Analog Conditional Statements

Analog conditional statements are syntactically equivalent to conditional statements
except that the true and/or false statemenéaraieg_statementd he conditional
expression must begenvar_expressiorsee the discussion in section 4.4.1 regarding
restrictions on the usage of analog operators.

analog_conditional_statement ::=
if (genvar_expressioytrue_analog_statement
[elsefalse_analog_statement |

Figure 6-5: Syntax of analog conditional statement

6.5 Case statement

Thecase statemens$ a multi-way decision statement that tests whether an expression
matches one of a number of other expressions, and branches accordingly. The case
statement has the following syntax:

Version 1.4 Verilog-AMS Language Reference Manual 6-5

Case statement

Analog Behavior

case_statement ::=
case (expressiorn) case_item { case_iteméndcase

case_item ::=
expression { expression } statement
| default [:] statement

Figure 6-6: Syntax for case statement

Thedefaultstatement is optional. Use of multiple default statements in one case
statement is illegal.

The case expression and the case item expression can be computed at runtime; neither
expression is required to be a constant expression.

Thecase_item_expressioare evaluated and compared in the exact order in which they
are given. During the linear search, if one of tageitem expressions matches the case
expression given in parentheses, then the statement associated with that case item is
executed. If all comparisons fail, and the default item is given, then the default item
statement is executed. If the default statement is not given, and all of the comparisons
fail, then none of the case item statements are executed.

6.5.1 Analog case statements

Version 1.4

Analog case statements are syntactically equivalent to case statements except the case
item statements can alsodelog_statementd he conditional expression must be a genvar
expression. See the discussion in section 4.4.1 regarding restrictions on the usage of
analog operators.

analog_case_statement ::=
case (analog_expressioncase_item { case_itemendcase

case_item ::=

analog_expression,{analog_expression:}analog_statement
| default [:] analog_statement

Figure 6-7: Syntax for analog case statement

Verilog-AMS Language Reference Manual 6-6

Looping statements Analog Behavior

6.5.2 Constant expression in case statement

A constant expression can be used for case expression. The value of the constant
expression shall be compared against case item expressions.

The following example demonstrates the usage by modeling a 3-bit priority encoder.

integer [2:0] encode ;

case(1)
encode[2] $display(“Select Line 2) ;
encode[1] $display(“Select Line 1) ;
encode[0] $display(“Select Line 0”) ;
default $strobg“Error: One of the bits expected ON”);
endcase
Note that the case expression is a constant expression (1). The case items are expressions
(array elements), and are compared against the constant expression for a match.

6.6 Looping statements

There are four types of looping statementspeat, while, for andgenerate These
statements provide a means of controlling the execution of a statement zero, one, or more
times.

for andgenerateare the only looping statements that can be used to describe analog
behaviors using analog operators.

looping_statement ::=
repeat_statement
| while_statement
| for_statement
| analog_for_statement
| generate_statement

Figure 6-8: Syntax for the looping statements

6.6.1 Repeat and while statements

repeat executes a statement a fixed number of times. Evaluation of the expression
decides how many times a statement is executed.

while executes a statement until an expression becomes false. If the expression starts out
false, the statement is not executed at all.

Version 1.4 Verilog-AMS Language Reference Manual 6-7

Looping statements Analog Behavior

The repeat and while expression must be evaluated once before the execution of any
statement in order to determine the number of times, if any, the statements will be
executed. The syntax foepeat andwhile statements is shown below:

repeat_statement ::=
repeat (expressior) statement

while_statement ::=
while (expression statement

Figure 6-9: Syntax for repeat and while statements

6.6.2 For statements

Thefor statement is a looping construct that controls execution of its associated
statement(s) using an index variable. If the associated statemenahigognstatement

then the control mechanism must consisjenf/ar_assignmenandgenvar_expressiort®

adhere to the restrictions associated with the use of analog operators. If the associated
statements are nabalog_statementthefor statement may use procedural assignments
and expressions, including genvar_expressions.

Thefor statement controls execution of its associated statement(s) by a three-step
process, as follows:

1. executes an assignment normally used to initialize an integer that controls the
number of loops executed

2. evaluates an expression—if the result is zero, the for-loop exits, and if it is not
zero, the for-loop executes its associated statement(s) and then perform step 3.

3. executes an assignment normally used to modify the value of the loop-control
variable, then repeats step 2 above.

The following shows the syntax for the two forms of thie statements:

for_statement ::=
for (procedural_assignmenexpression
procedural_assignmehstatement

analog_for_statment ::=
for (genvar_assignment ; genvar_expression ;
genvar_assignmehtanalog_statement

Figure 6-10: Syntax for the for statements

Version 1.4 Verilog-AMS Language Reference Manual 6-8

Events Analog Behavior

Analog operators are not allowed in trepeat, while andfor looping statements. They
are allowed iranalog_forandgeneratestatements.

Theanalog_forstatements are syntactically equivalent tofthrestatements except that
associated statement is also an analog statement (which contains analog operations). The
analog statement puts the additional restriction upon the procedural assignment and
conditional expressions of the for loop such that they be statically evaluatable. Verilog-
AMS HDL provides genvar-derived expressions for this purpose.

Example:

module genvarexp(out, dt);
parameter integer width = 1;
output out;
input dt[1:width];
electrical out;
electrical dt[1:width];
integer i;
genvark;
real tmp;

analog begin
tmp = 0.0;
for (k = 1; k <= width; k = k + 1pegin
tmp = tmp + V(dt[K]);
V(out) <+ddt(V(dt[k]));
end
end
endmodule

Seethe discussion in section 4.4.1 regarding additional information on restrictions on the
usage of analog operators.

6.7 Events

The analog behavior of a component can be controlled using events. The events have the
following characteristics:

events have no time duration

events can be triggered and detected in different parts of the behavioral model.

1
2
3. events do not block the execution of an analog block
4. events can be detected us@gperator

5

events do not hold any data

Version 1.4 Verilog-AMS Language Reference Manual 6-9

Events Analog Behavior

Threre are both digital and analog events. There are two types of analog eglefisl-
eventq6.7.4) andnonitored event.7.5). Null arguments are not allowed in analog
events.

6.7.1 Event detection

Analog event detection consist of an event expression followed by a procedural
statement. It takes the form:

event_controlled_statement ::=
@ (event_expressionstatement

event_expression ::=
simple_event pr event_expression]

simple_event ::=
global_event
| event_function

Figure 6-11: Syntax for event detection

The procedural statement following the event expression is executed whenever the event
described by the expression changes. The analog event detection is non-blocking,
meaning that the execution of the procedural statement is skipped unless the analog event
has occurred. The event expression consists of one or more signal names, global events,
or monitored events separateddoyperator.

The parenthesis around the event expression are required.

6.7.2 Event OR operator

The "OR-ing" of any number of events can be expressed such that the occurrence of any
one of the events trigger the execution of the procedural statement that follows it. The
keywordor is used as an event or operator.

For example,

analog begin
@(initial_step or cros{V(smpl)-2.5,+1))begin
vout = (V(in) > 2.5);
end
V(out) <+ vout;
end

Here,initial_step is a global event anttosg) returns a monitored event. The variable
vout is set tao or 1 whenever one of the two events occur.

Version 1.4 Verilog-AMS Language Reference Manual 6-10

Events

6.7.3

6.7.4

Version 1.4

Analog Behavior

Event Triggered Statements

The following two restrictions apply to the statements evaluated as a result of an event
being triggered.

» The statement can not have expressions that use analog operators. These
statements can not maintain their internal state. This is because they are executed
intermittently, only when the corresponding event is triggered.

» The statement can not be a contribution statement because it could generate
discontinuity in analog signals.

Global events

The global events are generated by the simulator at various stages of the simulation. The
user model can not generate these events. These events are detected by using the nam
of the global event in an event expression with the @ operator.

The global events are pre-defined in Verilog-AMS HDL. These events can not be
redefined in a model.

The following are pre-defined global events:

global_event ::=
initial_step [(analysis_lis)]
| final_step [(analysis_lis)]

analysis_list ::=

analysis_name {analysis_name }
analysis_name ::=

" analysis identifier”

Figure 6-12: Global events

Theinitial_step andfinal_step generate global events on the first and the last point in
an analysis respectively. They are useful when performing actions that should only occur
at the beginning or the end of an analysis. Both global events can take optional
arguments, consisting of an analysis list for which the global event is active. For
example,

@(initial_step(“ac”, “dc”)) /I active for dc and ac only
@(initial_step(“tran”)) I active for transient only

Table 6-1 describes the return valuenittil_stepandfinal_stepfor standard analysis. Each
column shows the return on event status. A statugegresents Yes andepresents
No. A Verilog-AMS simulator can use any or all of these typical analysis types.

Verilog-AMS Language Reference Manual 6-11

Events

Analog Behavior

Additional analysis names can also be used as necessary for specific implementations.

(See section 4.5.1 for further details.)

Table 6-1 Return Values for inital_step and final_step

Analysist DC TRAN AC NOISE

plp2 pN | OPpl pN| OPpl pN OPpl pN
initial_step() 10 O 1 0 O 1 0 O 1 0
initial_step("ac") 0O 0 O O 0 O 1 0 O 0 0
initial_step("noise™) 00 O 0O 0 O 0O 0 O 1 0 ¢
initial_step("tran”) 0 0 O 1 0 O 0O 0 O 0 0
initial_step("dc") 10 0 0O 0 O 0 0 O 0 0 d
initial_step(nknown [0 0 O 0 0 O 0O 0 O 0O 0O
final_step() 0 0 1 0 0 1 0O 0 1 0 0 1
final_step("ac") 00 O 0O 0 O 0O 0 1 0O 0 ¢
final_step("noise”) 0 0 O 0O 0 O 0 0 O 0O 0 1}
final_step("tran") 00 O 0 0 1 0O 0 O 0O 0 ¢
final_step("dc") 00 1 0 0 O 0O 0O 0 0 (
final_stepgnknown [0 O O 0O 0 O 0 0 O 0O 0 O

a. pX designates analysis point X, X = 1 to N; OP desginates the Operating Point.

The following example measures the bit-error rate of a signal and prints the result at the

end of the simulation.

module bitErrorRate (in, ref) ;
input in, ref;
electrical in, ref ;
parameter real period=1, thresh=0.5 ;
integer bits, errors ;

analog begin
@(initial_step) begin
bits =0 ;
errors =0 ;
end

@(timer (0, period))begin
if ((V(in) > thresh) != (V(ref) > thresh))
errors = errors + 1 ;
bits = bits + 1 ;
end

Version 1.4 Verilog-AMS Language Reference Manual

6-12

Events

6.7.5

6.7.5.1

Version 1.4

Analog Behavior

@(final_step)
$strobg("bit error rate = %f%%", 100.0 * errors / bits) ;
end
endmodule

Theinitial_step andfinal_stepevents take a list of quoted strings as optional arguments.
The strings are compared to the name of the analysis being run. If any string matches the
name of the current analysis name, then the simulator generates an event on the first
point and the last point of that particular analysis, respectively.

If no analysis list is specified, then the global event is only active during a transient
analysis. This is the default case. During a transient analysisitted_step global event

is active during the solution of the first timepoint (or initial DC analysis). Similarly the
final_step global event is active during the solution of the last timepoint of a transient
analysis.

Monitored events

The monitored events are detected using event functions wigh dperator. The
triggering of the monitored event is implicit due to change in signals, simulation time, or
other runtime conditions.

event_function ::=
cross_function
| timer_function

Figure 6-13: Monitored events

Cross Function

Thecrossfunction is used for generating a monitored analog event to detect threshold
crossings in analog signals. Ttr@ssfunction generates events when the expression
crosses zero in the specified direction. In addittposscontrols the timestep to
accurately resolve the crossing.

The general form is
cross (expression [direction [, time_tol [, expression_tol]]) ;

whereexpressions required, andlirection, time_tol, andexpression_toare optional.

All arguments are real expressions, exagipgction(which is an integer expression). If

the tolerances are not defined, then the tool (e.g., the simulator) sets them. If either or
both tolerances are defined, then the direction shall also be defined.

Thedirectionindicator can only evaluate to +1, -1, or O. Ifitis setto O or is not specified,
the event and timestep control occur on both positive and negative crossings of the
signal. Ifdirectionis +1 (or -1), the event and timestep control only occurs onrising edge

Verilog-AMS Language Reference Manual 6-13

Events Analog Behavior

(falling edge) transitions of the signal. For any other transitions of the signal, the cross
function does not generate an event.

The definition ofexpression_tohndtime_tolare shown in Figure 6-14. They represent
the maximum allowable error between the estimated crossing point and the true crossing

point.
Solution .
Points ¢ expression_tol

-
time_tol

Figure 6-14: Relationship between time tolerance in expression tolerance

If expression_tak defined, théime_tolmust also be defined and both tolerances must
be satisfied at the crossing.

The following description of a sample-and-hold illustrates howctiossfunction might
be used.

module sh (in, out, smpl) ;
output out ;
input in, smpl ;
electrical in, out, smpl ;
real state ;
analog begin
@(crosgV(smpl) - 2.5, +1))
state = V(in) ;
V(out) <+ transition (state, 0, 10n) ;
end
endmodule
The cross function maintains internal state and has the same restrictions as analog
operators. In particular, it must not be used inside a conditional stateirerddasg
unless the conditional expression is a genvar expression. In additomsjs not allowed
in the repeat, while, and while iteration statements. It is allowed iarthlog_for
statements

Version 1.4 Verilog-AMS Language Reference Manual 6-14

Announcing Discontinuity Analog Behavior

6.7.5.2

6.8

Version 1.4

Timer Function

Thetimer function is used to generate analog events to detect specific points in time.
The general form is
timer (start_time [, period [, Timetol]]) ;

wherestart_timeis requiredperiodandTimetolare optional arguments. All arguments
are real expressiongimetolis set by the simulator to provide adequate resolution.

Thetimer function schedules an event that occurs at an absolute time (as specified by
start_timg. The analog simulator places a time point witllimetolof an event. At that
time point, the event evaluatesTioe.

If Timetolis not specified, the default time point is at, or just beyond, the time of the
event. Ifperiodis specified as greater thanthen the timer function schedules
subsequent events at multiplegefiod

A pseudo-random bit stream generator is an example how the timer function might be
used.

module bitStream (out) ;
output out ;
electrical out ;
parameter period = 1.0 ;
integer x ;

analog begin
@(timer (0, period))
x =$random + 0.5 ;
V(out) <+ transition(x, 0.0, period/100.0) ;
end
endmodule

Announcing Discontinuity

Thediscontinuity function is used to give hints to the simulator about the behavior of
the module so that it can control the simulation algorithms to get accurate results in
exceptional situations. It does not directly specify the behavior of the module. The
discontinuity function should be executed whenever the analog behavior changes
discontinuously.

The general form is
discontinuity();

Because discontinuous behavior can cause convergence problems, discontinuity should
be avoided whenever possible.

The filter functionstfansition, slew, laplace, etc.) are provided to smooth
discontinuous behavior. However, in some cases it is not possible to implement the
desired functionality using these filters. In this cass;ontinuity function should be
executed when the signal behavior changes abruptly.

Verilog-AMS Language Reference Manual 6-15

Announcing Discontinuity Analog Behavior

Discontinuity created by switch branches and built-in system functions, such as
transition andslewdo not need to be announced.

The following example uses the discontinuity function to model a relay.

module relay (c1, c2, pin, nin) ;
inout c1, c2 ;
input pin, nin ;
electrical c1, c2, pin, nin ;
parameter real r=1 ;
analog begin
@(crosgV(pin,nin))) discontinuity() ;
if (V(pin,nin) >=0)
I(c1,c2)<+ V(cl,c2)Ir;
else
I(c1,c2)<+0;
end
endmodule

In this examplegrossfunction controls the time step so that the time when the relay
changes position is accurately resolved. It also triggers the discontinuity function that
causes the simulator to react properly to the discontinuity. This would have been handled
automatically if the type of the branch (c1,c2) had been switched between voltage and
current.

Another example is a source that generates a triangular wave. In this case, neither the
model nor the waveforms generated by the model are discontinuous. Rather, the
waveform generated is piecewise linear with discontinuous slope. If the simulator is
aware of the abrupt change in slope, it can adapt to eliminate problems that result from
the discontinuous slope (typically changing to a first order integration method).

module triangle(out);
output out;
voltage out;
parameter real period = 10.0, amplitude = 1.0;
integer slope;

real offset;
analog begin
@(timer (0, period))begin
slope = +1;

offset =$realtime;
discontinuity();

end

@(timer (period/2, period)pegin
slope =-1;
offset =$realtime;
discontinuity();

end

V(out) <+ amplitude*slope*
(4*($realtime - offset)/period - 1);
end
endmodule

Version 1.4 Verilog-AMS Language Reference Manual 6-16

Time related functions Analog Behavior

Finally, here is a case where timer function is used without usdiggantinuity
function. In this case, the event generated byither function indicates that a
measurement should be printed, but that neither the model nor the waveforms contain
discontinuity.
module sampler (in) ;
input in ;
voltage in ;
parameter real period = 10.0 ;

analog @timer (0, period))
$strobe("%g\t%g", $realtime, V(in)) ;
endmodule

6.9 Time related functions

There are two functiongound_stepandlast_crossing related to simulation time.

6.9.1 Bounding the time step

Thebound_stepfunction puts a bound on the next time step. It does not specify exactly
what the next time step should be, but it bounds how far the next time point can be from
the present time point. The function takes the maximum time step as an argument. It does
not return a value.

The general form is

bound_step(expression) ;

whereexpressions a required argument and represents the maximum timestep the
simulator can advance.

The example below implements a sinusoidal voltage source and uses the bound_step()
function to assure that the simulator faithfully follows the output signal (it is forcing 20
points per cycle).

module vsine(out);
output out;
voltage out;
parameter real freq=1.0, ampl=1.0, offset=0.0;

analog begin
V(out) <+ ampl*sin(2.0*M_PI *freq* $realtime) + offset;
bound_stef0.05/freq);
end
endmodule

Version 1.4 Verilog-AMS Language Reference Manual 6-17

Time related functions Analog Behavior

Version 1.4 Verilog-AMS Language Reference Manual 6-18

Fundamentals Mixed-Signal

Section 7
Mixed-Signal

This Section is a work-in-progress!

7.1 Fundamentals

7.1.1 Domains
7.1.2 Contexts
7.1.3 Analog and Digital Disciplines

7.1.4 Nets, Nodes, and Signals

7.2 Discipline Resolution and Connection Module Insertion

7.2.1 Discipline Resolution

In some cases incompatible disciplines may appear at the high and low connection of a
port but both may be in the same domain. That is they may both be continuous-time
disciplines, or both discrete-time disciplines. In this case no connection module may be
needed, but we may wish the two segments to be treated as a single segment with only
one discipline. In this case the following form of the connect statement is used:

connectdiscipline_listusing discipline ;
where the disciplines in the discipline list are the disciplines which may be consolidated
and the final discipline is the discipline to which they resolve.

7.2.2 Resolution of Discrete-time Disciplines

Signals and ports of discrete-time disciplines must obey the rules imposed by Verilog-D
on such connections.

Version 1.4 Verilog-AMS Language Reference Manual 7-1

Behavioral Interaction Mixed-Signal

In addition the real-valued nets cannot be connected to scalar or vector bit-valued nets
without a connection module.

7.3 Behavioral Interaction

* Verilog-AMS has a separate block for defining analog behavior inside a module.
q Analog behavior can only be described inside of the analog block.
g Analog functions can be created but only used inside of the analog block

g There can be only one analog block per module.
* In general digital behavioral is defined in the initial/always blocks and analog in the analog block.

q All three types of blocks can appear in the same module.
* Read operations of continuous-time and discrete-time signals are allowed from any context
* Write operations of:

g continuous-time signals are only allowed from inside an analog construct.
q discrete-time signals are allowed from any context outside of an analog construct.

Verilog-AMS provides ways to :

» Access analog signals from a digital block

» Access digital signals from an analog block

» Allow a analog event to effect a digital block

* Allow a digital event to effect a analog block

» Use the same variable in both the analog and digital blocks

Analog Signal Appearing in an Digital Expression

reg clock;
real r;
electrical x;

always @(posedge clock) begin

r=V(x);
end

Version 1.4 Verilog-AMS Language Reference Manual 7-2

Behavioral Interaction

Digital Signal Appearing in an Analog Expression

reg d;
electrical x;

analog begin
if (d==0)
V(X) <+ 0.0;
else
V(x) <+ 3.0;
end

Analog Event Appearing in an Digital Event Control

electrical x;

reg d;

integer i;

always @(cross(V(x) - 4.5, 1)) begin
i=d;

end

Digital Event Appearing in an Analog Event Control

real r;
reg d;
electrical x, y;
analog begin
@(posedge d or cross(V(y), 1))
r=V(x);
end

Common variables in both the analog and digital blocks

* Variables can be read from any context

Version 1.4 Verilog-AMS Language Reference Manual

Mixed-Signal

7-3

Connect Statement and Connection Module Semantics Mixed-Signal

» Variables can only be written to by one context
q This context defines the owner or what type of variable it is, analog or digital

real vth;

integer cm;

always @(cross(V(in) - vth, 1))
cm=1b1;

always @(cross(V(in) - vth, -1))
cm=1Db0;

analog begin

vth = (V(vce) - V(vee)) /2 + V(vee);

v(out) <+ transition(((cm==1) ? 5.0:0.0), 10n, 5n, 5n) ;
end

7.3.1 Synchronous

7.3.1.1 Events and Event Controls

7.3.2 Asynchronous

7.4 Connect Statement and Connection Module Semantics

Theconnectstatement performs the following functions.

» definesrules for the auto-insertion of connection modules between incompatible
disciplines (section 7.5).

» supports manual insertion of a connection module.
» defines the rules for incompatible discipline resolution (section 7.2.1).
» supports back-annotation of parasitics(section 7.6).

Theconnectstatement has the following syntax.

Version 1.4 Verilog-AMS Language Reference Manual 7-4

Connect Statement and Connection Module Semantics Mixed-Signal

connect_statement ::=
connectdiscipline_identifierto discipline_identifier
module identifier attributes
| connectdiscipline identifierwith
discipline_identifier module identifier attributes
| connectmodule identifier;
| connectdiscipline list using discipline_identifier
module identifier attributes
| connectmodule identifier(port_list) signal_path
attributes ::=
[* empty */
| #(attribute_list)
attribute_list ::=

attribute
| attribute_list, attribute
attribute ::=
.parameter identifier (parameter_valug
| .connect_mode €conn_modg
conn_mode ::=

split | merged

Figure 7-1: Syntax for connect statement

The first two forms of theonnectstatement listed above deal with automatic insertion of
connection modules between incompatible disciplines. The third form is used to
manually insert a connection module. The fourth form is used for discipline resolution
and the last deals with back annotation of parasitic information.

For convenience we will refer to the various forms of the connect statement by the
following names:

UNIDIRECTIONAL CONNECT STATEMENT : connect discipline_identifierlto
discipline_identifier2 module identifier attributes ;

In this formdiscipline_identifierl is referred to as tlseurceanddiscipline identifier2 is
referred to as thsink.

BIDIRECTIONAL CONNECT STATEMENT : connect discipline_identifierwith
discipline_identifier module identifier attributes ;

CONNECT MODULE DECLARATION : connect module identifier ;

RESOLUTION CONNECT STATEMENT : connect discipline_list using discipline identifier
module identifier attributes ;

PARASITIC CONNECT STATEMENT : connect module identifier(port_list) signal_path ;

Version 1.4 Verilog-AMS Language Reference Manual 7-5

Automatic Insertion of Connection Modules

7.5

Version 1.4

Automatic Insertion of Connection Modules

module dig_inv(in, out);

input in;
output out;
logic in, out;

alwaysbegin
out = #10 ~in;
end

endmodule

module analog_inv(in, out);

input in;

output out;

electrical in, out;
parameter real vth =2.5;

analog begin
if (V(in) > vth))
outval = 0;
else
outval =5
V(out) <+ transition(outval);
end
endmodule
module ring;

dig_inv d1 (n1, n2);
dig_inv d2 (n2, n3);
analog_inv a3 (n3, nl);

endmodule

module elect_to_logic(el,cm);

input el;
reg cm;
electrical el;
logic cm;

Verilog-AMS Language Reference Manual

Mixed-Signal

Automatic insertion of connection modules is performed when signals and ports with
discrete time domain and continuous time domain disciplines are connected.The
connection module defines the conversion between these different disciplines.

An instance of the connection module will be inserted across any port that matches the
rule specified by aonnectstatement. Rules for matching connect statements with ports
(stated in detail later) take into account the port direction, and the disciplines of the
signals connected to the port.

For example,

7-6

Automatic Insertion of Connection Modules Mixed-Signal

751

7.5.1.1

Version 1.4

always
@(crosqV(el)- 2.5, 1)
cm=1;
always
@(crosqV(el) - 2.5, -1)
cm =0;
endmodule
module logic_to_elect(cm,el);
input cm;
output el;
logic cm;
electrical el;

analog
V(el) <+ transition((cm == 1) ? 5.0 : 0.0);

endmodule

connectelectricalto logic elect_to_logic;

connectlogicto electrical logic_to_elect;

Eachconnectstatement designates a module to be a connection module. In the example
above two moduleseglect_to_logicand logic_to_electare specified as the connection
modules to be automatically inserted whenever a signal and a module port of disciplines
electricalandlogic are connected.

For example, moduleect_to_logianill convert signals on porut of instancea3to portin
of instancad1l. The moduléogic_to_elecwill convert the signal on poriut of instanced2
to portin of instanceas.

Connection Module Selection and Insertion

The selection of a connection module depends upon the disciplines of all the ports and
signals connected together. It is, therefore, a post elaboration operation. This is because
the signal connected to a port is only known when the module in which the port is
declared has been instantiated.

Signal Segmentation

After a connection module has been selected it cannot be inserted until we determine
whether there should be one connection module per port, or one connection module for
all the ports on a signal that match a givwennectstatement. Inserting multiple copies of

the same connection module on one signal (i.e. between the signal and the multiple ports)
will have the effect of creating distinct segments of the signal which are of the same
discipline.

Verilog-AMS Language Reference Manual 7-7

Automatic Insertion of Connection Modules Mixed-Signal

Version 1.4

This segmentation of the signal that connects ports is only performed in the case of
digital ports (i.e. ports with discrete-time domain or digital discipline). It is assumed that
for analog (or continuous-time domain) disciplines it is never desirable to segment the
signal between the ports.That is, there should never be more than one analog node
representing a signal.

However it may be desirable for the simulators internal representation of the signal to
consist of various separate digital segments each with its own connection module. For
example, this is useful to model the loading effect of each individual digital port on the
analog signal or node.

Verilog-AMS Language Reference Manual 7-8

Automatic Insertion of Connection Modules

Version 1.4

Insertion of Connection Instances Creates Distinct
Segments in a Signal

LOGIC
connection instance
Analog |—
LOGIC
—x
Analog |— LOGIC
one LOGIC segment for all LOGIC ports
in
LOGIC
out
Analo —
. = out
LOGIC
in
X
Analog |— n LOGIC
two LOGIC segments
(one for inputs, one for outputs)
—D4— LOGIC
=
Analog |—
= LOGIC
— X
Analog |— —— LOGIC

a separate LOGIC segment for each LOGIC port

Figure 7-2: Signal segmentation by connection modules

Verilog-AMS Language Reference Manual

Mixed-Signal

Automatic Insertion of Connection Modules Mixed-Signal

7.5.1.2

Version 1.4

Connect_mode Attribute

An attribute is provided for theonnecistatement to direct the segmentation of the signal
which may occur while inserting a connection module. If segmentation is desired then it
may be specified in theonnectstatement using the attributennect_mode This attribute

can take one of three predefined valuesptit or merged.It has a default value aiferged.

This attribute applies when there is more than one port on a signal for whichrhet
statement applies, and when those ports have a digital discipline. The keyword
connect_modedndicates how input, output or inout ports of the given discipline should be
combined for the purpose of inserting connection modules.

For example,

connectelectricalto logic elect_to_logic #(.connect_modplit));
This connectstatement specifies a modudggct_to_logicwill be inserted across a module
port

» if an input port haggic discipline and the signal connecting to the port has
electricaldiscipline.

» ifan output port has electrical discipline and the signal connecting to the port has
logic discipline.

If there is more than one such input port connected at a node, then Geititeg mode
attribute tosplit requires that there be one connection module for each port, that converts
between signal discipline and the port discipline. In this way the signal connecting to the
ports is segmented by the insertion of one connection module for each port.

Verilog-AMS Language Reference Manual 7-10

Automatic Insertion of Connection Modules Mixed-Signal

TTL
a2d _
electrical
inputs X
d2a
outputs g
d2a
inouts I
TTL
inputs :I
d2a
outputs g
d2a
inouts : ¢
bidir

connectttl to electrical d2a #(.connect_modplit));
connectelectrical to ttl a2d #(.connect_modw®agrged));

connectelectrical with ttl bidir #(.connect_mode{erged));

Figure 7-3: Connect module insertion with Signal Segmentation

In figure 7-3 the connections of aectricalsignal tottl output ports results in a distinct
instance of thed2a connection module being inserted for each output port. This is
mandated by theonnect_modattribute set taplit.

Connection of thelectricalsignal tottl input ports results in a single instance of tize
connection module being inserted betweendlhetricalsignal and all thetl input ports.
This is mandated by th®nnect_modattribute set tanerged.This behavior is also seen for
ttl inout ports which has @nnect_modattribute set taerged.

Version 1.4 Verilog-AMS Language Reference Manual 7-11

Automatic Insertion of Connection Modules Mixed-Signal

For example:

connectelectricalto cmos02u cmosA2d #(.r(30k),
.connect_modsaplit));

performs three functions:

1. Connect an instance a@hosA2dmodule between a signal witlectricaldiscipline
and the input port witbmoso2udiscipline, or an output port withectrical
discipline and the signal wiilmos02udiscipline.

2. Set the value of the parametéo 30k.
3. Use one module instance for each input port.

If there are many output ports for which this rule applies, then by definition there will be
no segmentation of the signal between these ports, since the ports have distigting
(an analog discipline).

Another example:

connectelectricalto cmos04u cmosA2d #(.r(15k),
.connect_modeferged));

1. Connect an instance @fhosA2dmodule between a signal with electrical
discipline and an input port witinoso4udiscipline, or an output port with
electricaldiscipline and a signal wittmos4udiscipline.

2. Set the value of the parametéo 15k.

3. Use one module instance regardless of the number of ports.

7.5.1.3 Attribute Merged

The other possible value for th@nnect_modeattribute ismerged This value for the
attribute instructs the simulator to try to group all ports (whether they are input, output
or inout) and to have just one connector module for all, provided that the module is the
same for all.

The example which follows illustrates the effect of thergedattribute. Connection of
theelectricalsignal tottl inout ports andtl input ports results in a single connector module,
bidir, inserted between the ports and the electrical signal. The ttl output ports are merged,
but with a different connection module which means that there is one connector module
inserted between the electrical signal and all of the ttl output ports.

Version 1.4 Verilog-AMS Language Reference Manual 7-12

Automatic Insertion of Connection Modules Mixed-Signal

TTL

bidir]
electrical
inputs

outputs
P d2a

inouts

TTL

inputs j

outputs j

inouts

connectttl to electrical d2a #(.connect_modaérged));
connectelectricalto ttl bidir#(.connect_modeferged));

connectttl with electrical bidir #(.connect_modeérged));

Figure 7-4: Connector insertion with connect_mode attribute merged

7.5.2 Internal Representation, Driver Receiver Segregation

If the hierarchical segments of a signal are all digital, or all analog then the signal is not
a mixed signal and the internal representation of the signal will not differ from that of a
purely digital or an analog signal.

If, on the other hand, the signal has both analog and digital segments in its hierarchy, then
it is a mixed signal. In this case appropriate conversion elements will be inserted, either
manually or automatically.

Version 1.4 Verilog-AMS Language Reference Manual 7-13

Automatic Insertion of Connection Modules Mixed-Signal

7521

Version 1.4

* All the analog segments of a mixed signal are representations of a single analog
node.

» Each of the noncontiguous digital segments of a signal will be represented
internally as a separate digital signal, with its own state.

Driver-Receiver Segregation

In the digital domain signals may have drivers and receivers. A driver makes a
contribution to the state of the signal. A receiver accesses, or reads, the state of the signal.
In a pure digital net, i.e. one without an analog segment, the simulation kernel resolves
the values of the drivers of a signal, and when there is a change in state it propagates the
new value to the receivers by means of an event.

In the case of a mixed net, that is one with digital segments and an analog segment, we
may not want the digital simulation kernel to propagate new values directly from drivers
to receivers, but, to propagate the change to the analog simulation kernel which can then
detect a threshold crossing and then propagate the change in state back to the digital
kernel. This, among other things, allows the simulation to account for rise and fall times
caused by analog parasitics.

Within digital segments of a mixed-signal net, drivers and receivers of ordinary modules
may be segregated, so that transitions are not propagated directly from drivers to
receivers, but propagate through the analog domain.

The drivers and receivers of connection modules will be oppositely segregated. That is,
the connection module drivers will be grouped with the ordinary module receivers and
the ordinary module drivers will be grouped with the connection module receivers.

Thus digital transitions are propagated from drivers to receivers by way of analog,
through the connection module instances.

Verilog-AMS Language Reference Manual 7-14

Automatic Insertion of Connection Modules Mixed-Signal

Hierarchical Definition Internal Representation
analog
digital
analog . —
connection driver
digital
[] inoutport connection receiver
-
< drivers <
digital -
L . drivers —
receivers e
Input receivers
port []
[] inout port
[] output
» drivers < port
digital '
Igita > _ drivers —
receivers : :
> connection receiver —
receivers
-
[] inout port
|
connection driver
analog

Figure 7-5: Driver-Receiver Segregation in Modules with Bidirectional ports

Version 1.4 Verilog-AMS Language Reference Manual 7-15

Automatic Insertion of Connection Modules Mixed-Signal

Hierarchical Definition Internal Representation
analog
analog
digital digital
[] output port connection receiver |l-g——
- I
- drivers drivers
- e
digital e
—> . .
receivers
receivers
|:| output port |:| output port |:|
< drivers >
-
dlglta' drivers
> .
receivers . .
— connection driver —
receivers
[] output port
analog
Figure 7-6: Driver-Receiver Segregation in modules with Unidirectional ports
7.5.3 Rules for Driver/Receiver Segregation and

Connection Module Selection and Insertion

Driver/receiver segregation and connection module insertion is a post elaboration
operation. It depends on a complete hierarchical examination of each signal in the
design, that is, an examination of the signal in all the contexts through which it passes.
If the complete hierarchy of a signal is digital, that is, the signal has a digital discipline
in all contexts through which is passes, then it is a digital signal rather than a mixed
signal. Similarly, if the complete hierarchy of a signal is analog, then it is an analog
signal rather than a mixed signal. Rules for driver/receiver segregation and connection
module insertion apply only to mixed signals, that is, to signals which have an analog

Version 1.4 Verilog-AMS Language Reference Manual 7-16

Automatic Insertion of Connection Modules Mixed-Signal

Version 1.4

discipline in one or more of the contexts through which they pass, and a digital discipline
in one or more of the contexts. In this case context refers to the appearance of a signal in
a particular module instance. For a particular signal we will refer to a module instance
as a digital context if the signal has a digital discipline in that module or an analog
context if the signal has an analog discipline. We refer to the appearance of a signal in a
particular context as a segment of the signal. In general a signal in a fully elaborated
design consists of various segments some of which may be analog and some of which
may be digital. A port represents a connection between two segments of a signal the
context of one of the segments is an instantiated module and the context of the other is
the module which instantiates it. We refer to the segment in the instantiated module as
the lower or formal connection and the segment in the instantiating module as the upper
or actual connection. A connection element is selected for each port to which one
connection is analog and the other digital.

The following rules govern driver/receiver segregation and connection module
selection. These rules apply only to mixed signals.

1. A mixed signal is represented in the analog domain by a single node, regardless
of how its analog contexts are distributed hierarchically.

2. Digital drivers of mixed signals are segregated from receivers so that the digital
drivers contribute to the analog state of the signal and the analog state, in turn,
determines the value seen by the receivers.

3. A connection will be selected for a port only if one of the connections to the port
is digital and the other is analog. If this is the case then the port must match one
(and only one) connection statement. The module named in the connection
statement is the one which will be selected for the port.

4. Input ports will match unidirectional connection statements. An input port
matches a unidirectional connection statement if the upper connection discipline
of the port matches the source discipline in the connect statement and the lower
connection discipline of the port matches the sink discipline in the connect
statement.

5. Output ports will match unidirectional connection statements. An output port
matches a unidirectional connection statement if the upper connection discipline
of the port matches the sink discipline in the connect statement and the lower
connection discipline of the port matches the source discipline in the connect
statement.

6. Inout ports will match bidirectional connection statements. The connection
statement will match the port if the two disciplines in the connection statement
are the same as the disciplines of the connections to the port.

Verilog-AMS Language Reference Manual 7-17

Automatic Insertion of Connection Modules Mixed-Signal

Once connection modules have been selected, they will be inserted according to the
connect_mode parameters in the pertinent connect statements. These rules apply to
connection module insertion:

1. The connect mode of a port for which a connection module has been selected will
be determined by the value of the connect_mode parameter of the connect
statement which was used to select the connection module.

2. The connection module for a port will be instantiated in the context of the ports
upper connection.

3. All ports connecting to the same signal (upper connection) and having the same
connection module and having a connect_mode parameter of merged will share
a single instance of the selected connection module.

4. All other ports will have an instance of the selected connection module, that is
one connection module instance per port.

7.5.4 Instance Names for Auto-Inserted Instances

Parameters of auto-inserted connection instances may be set on an instance by instance
basis with the use of thiefparam statement. This necessitates predictable instance names
for the auto-inserted modules.

For the case of auto-inserted instances the following naming scheme is employed to
unambiguously distinguish the connector modules. Depending oredifrect_mode
attribute the following name identifies the connector module.

1. Merged
In the merged case one or more ports have a given discipline at their bottom
connection, call it BottomDiscipline, and a common signal, call it SigName, of
another discipline, call it TopDiscipline, at their top connection. A single
connection module is placed between the top signal and the bottom signals. In
this case the instance name of the connection module is derived from the signal
name and the bottom discipline,

<SigName><BottomDiscipline>
2. Split
In the split case one or more ports have a given discipline at their bottom
connection and a common signal, of another discipline, call it TopDiscipline, at

their top connection. One module instance is instantiated for each such port. In
this case the instance name of the connection module is,

<SigName><InstName><PortName>

where InstName and PortName are the local instance name of the port and its instance
respectively.

Version 1.4 Verilog-AMS Language Reference Manual 7-18

Back Annotation of Parasitics Mixed-Signal

7.6

Version 1.4

Back Annotation of Parasitics

The following form of the connect statement is for back annotation of parasitics such as
SPF data extracted from the output of physical layout tools:

connect module_identifier (port_list) signal_path ;

The signal whose path is given is removed. The module whose name is given is
instantiated with the same path name as the signal which was removed. The port_list
must contain all the ports to which the signal had been connected. This includes ports
which make out of context reference to the signal.

Connect statements of this form will not be executed until after the rest of the design has
been elaborated. The named signal will be removed from each port in the port list
regardless of whether it was at the upper or lower connection of the port. The named
module will be instantiated with same name as the removed signal and each of the
removed connections will be replaced by the signal at the lower connection of the

Verilog-AMS Language Reference Manual 7-19

Back Annotation of Parasitics Mixed-Signal

corresponding port on the new instance.

Example

Circuit with Parasitics

T

LR

o
»

Original Circuit

If the original circuit in the diagram above is expressed as follows:

module top();
logic inn, outb, outn, inb, X;

notifl c1(x,inn,cn);

buf c2(outb,x);

not c3(outn,x);

bufifl c4(x,inb,cb);
endmodule

Then the following module could be used to backannotate parasitics:

Version 1.4 Verilog-AMS Language Reference Manual 7-20

Driver Access Functions Mixed-Signal

module backan(x1,x2,x3,x4)
inout x1,x2,x3,x4;
electrical x1,x2,x3,x4;

resistor #(100) r1(x2,x3);

voltage #(0.0) v1(x1,x2);

voltage #(0.0) v2(x3,x4);

capacitor #(0.000001)(x4,gnd):
endmodule

This would be done with the followingnnectstatement:
connectbackan (top.cl.out,top.c2.in,top.c3.in,top.c4.out) top.x;

The result is that the wirep.xis removed and replaced with the modhdexan

7.6.1 Port Names for Verilog Built-in Primitives

In the cases of instances of modules and instances of UDPs port names are well defined.
In these cases the port name is the name of the signal at the lower connection of the port.
in the case of built in primitives, however, Verilog-D does not define port names. It s,
thus necessary to define port names for the ports of built in primitives in Verilog-MS.

The following conventions will be used for naming Verilog Ports.

1. For N-input gatesad, nand, nor, or, xnor, xothe output will be nameadut, and the
inputs reading from left to right will bie1, in2, in3 etc.

2. For N-output gates(f, not) The input will be namech, and the outputs reading
from left to right will be nameduti, out2, out3etc.

3. For 3 port MOS switchesrfios, pmos, rnmos, rpmdé)e ports reading from left to
right will be namedource, drain, gate

4. For 4 port MOS switchesifios, rcemosghe ports reading from left to right will be
namedsource, drain, ngate, pgate

5. For bidirectional pass switchasaf, tranif1, tranifo, rtran, rtranifl, rtranifine ports
reading from left to right will be namesdurce, drain, gate

6. For single port primitives(llup, pulldowr) the port will be nameadut.

7.7 Driver Access Functions

Access to individual drivers is necessary for accurate implementation of connection
modules (section 7.5). A driver of a signal is a process which assigns a value to the
signal, or a connection of the signal to an output port of a module instance or simulation

Version 1.4 Verilog-AMS Language Reference Manual 7-21

Driver Access Functions Mixed-Signal

primitive. The driver access functions described here apply only to drivers found in
ordinary modules and not to those found in connection modules.

A signal may have a number of drivers and each driver may have a current value and a
pending value. The current value is the current contribution of the driver to the resolved
state of the signal and the pending value is the next scheduled contribution, if any, of the
driver to the resolved state of the signal.

7.7.1 driver_update event

The status of drivers for a given signal can be monitored with a new event detection
keyworddriver_update. It can be used in conjunction with the event detection ope@tor
to detect updates to any of the drivers of the signal. For example:

always @driver_update clock)
statement;

will causestatemento execute any time a driver of the sigelatk is updated. Here, an
update is defined as the addition of a new pending value to the driver. This is true
whether or not there is a change in the resolved value of the signal.

The functions described below can be used to access the information about the drivers
of a signal.

7.7.2 driver_count function

Thedriver_count functiometurns an integer representing the number of drivers
associated with the signal in question. The syntax is as follows:

driver_count_function ::=
driver_count (signal_namé

Figure 7-7: Syntax for driver_count function

The drivers are arbitrarily numbered from O to N-1, where N is the total number of
drivers contributing to the signal value. For example, if this function returns a value 5
then the signal has 5 drivers numbered from O to 4.

7.7.3 driver_active function

Thedriver_active functiometurns an integer index for each driver of the signal which is
currently active. The syntax is as follows:

Version 1.4 Verilog-AMS Language Reference Manual 7-22

Driver Access Functions Mixed-Signal

driver_active_function ::=
driver_active (signal_name

Figure 7-8: Syntax for driver_active function

Each call to this function returns the index of the driver that is currently active. Repeated
calls of this function will return the index of the active drivers in increasing order. When
the indices for all the active drivers at the current time have been returned, the next call
to this function will return -1. If this function is called after it has returned -1, it will cycle
through the active drivers again.

The returned value (driver index) may be used as the driver argument in any of the
following driver access tasks described below. The drivers are arbitrarily numbered 0 to
N-1, where N is the total number of drivers contributing to the signal value.

For example, if a the signal has 10 drivers, of which drivers numbered 3, 5, and 8 are
active currently then 8 successive calls to this function will return, in order, 3, 5, 8, -1, 3,
5, 8, -1.

71.7.4 driver_local function

Thedriver_local functiorreturns an integer value that represents the index of the driver
if the calling process has a driver for the signal (active or inactive). The syntax is as
follows:

driver_local_function ::=
driver_local (signal_name

Figure 7-9: Syntax for driver_local function

If there is no driver for the signal in the local process, this function returns -1.

7.7.5 driver_state function

Thedriver_state functiometurns the current value contribution of a specific driver to the
state of the signal. The syntax is as follows:

Version 1.4 Verilog-AMS Language Reference Manual 7-23

Driver Access Functions Mixed-Signal

driver_state_function ::=
driver_state (signal_name, driver_indgx

Figure 7-10: Syntax for driver_state function

Thedriver_indexvalue is an integer value between 0 and N-1, where N is the total number
of drivers contributing to the signal value. The state value is returned as 0, 1, x, or z.

7.7.6 driver_strength function

Thedriver_strength functioneturns the current strength contribution of a specific driver
to the strength of the signal. The syntax is as follows:

driver_strength_function ::=
driver_strength (signal_name, driver_index

Figure 7-11: Syntax for driver_strength function

Thedriver_indexvalue is an integer value between 0 and N-1, where N is the total number
of drivers contributing to the signal value. The strength value is returned as an integer
between 0 and 7.

7.7.7 driver_delay function

Thedriver_delay functiometurns the delay, from current simulation time, after which
the pending state or strength becomes active. If there is no pending value on a signal it
will return zero.The syntax is as follows:

driver_delay_function ::=
driver_delay (signal_name, driver_indgx

Figure 7-12: Syntax for driver_delay function

Thedriver_indexvalue is an integer value between 0 and N-1, where N is the total number
of drivers contributing to the signal value.

Version 1.4 Verilog-AMS Language Reference Manual 7-24

Driver Access Functions Mixed-Signal

The returned delay value is an integer.

7.7.8 driver_next_state function

Thedriver_next_state functioreturns the pending state of the driver, if there is one. If
there is no pending state it returns the current state.

driver_next_state_function ::=
driver_next_state (signal_name, driver_indéx

Figure 7-13: Syntax for driver_next_state function

Thedriver_indexvalue is an integer value between 0 and N-1, where N is the total number
of drivers contributing to the signal value. The pending state value is returned as 0, 1, x,
or z.

7.7.9 driver_next_strength function

Thedriver_next_strength functiaeturns the strength associated with the pending state
of the driver, if there is one. If there is no pending state it returns the current strength.

driver_next_strength_function ::=
driver_next_strength (signal_name, driver_indéx

Figure 7-14: Syntax for driver_next_strength function

Thedriver_indexvalue is an integer value between 0 and N-1, where N is the total number
of drivers contributing to the signal value. The pending strength value is returned as an
integer between 0 and 7.

Version 1.4 Verilog-AMS Language Reference Manual 7-25

Driver Access Functions Mixed-Signal

Version 1.4 Verilog-AMS Language Reference Manual 7-26

Modules Hierarchical Structures

Section 8
Hierarchical Structures

Verilog-AMS HDL supports a hierarchical hardware description by allowing modules to
be embedded within other modules. Higher-level modules create instances of lower-
level modules and communicate with them through input, output, and bidirectional ports.

To describe a hierarchy of modules, the user provides textual definitions of various
modules. Each module definition stands alone; the definitions are not nested. Statements
within the module definitions create instances of other modules, thus describing the
hierarchy.

Verilog-AMS provides aonnectstatement to define the rules for automatic insertion of
user defined modules to connect ports of incompatible disciplines.

8.1 Modules

A module definition is enclosed between the keywondslule andendmodule The
identifier following the keywordnodule is the name of the module being defined. The
optional list of ports specify an ordered list of the module’s ports. The order used can be
significant when instantiating the module (section 8.1.2). The identifiers in this list must
be declared in input, output, and inout declaration statements within the module
definition. The module items define what constitutes a module, and include many
different types of declarations and definitions. A module definition can have at most one
analog block.

The keywordmacromodule can be used interchangably with the keywoimtlule to
define a module. An implementation can choose to treat module definitions beginning
with themacromodule keyword differently.

Version 1.4 Verilog-AMS Language Reference Manual 8-1

Modules Hierarchical Structures

module_declaration ::=
module_keywordnodule identifier [list_of ports]
[module_items]

endmodule
module_keyword ::=
module
| macromodule
list_ of ports ::=
(port{,port})
port ::=

port_expression
| . port_identifier([port_expression)
port_expression ::=
port_identifier
| port_identifier[constant_expressidn
| port_identifier[constant_range
constant_range ::=
msh constant_expressiarsb_constant_expression
module_items ::=
{ module_item }
| analog_block
module_item ::=
module_item_declaration
| parameter_override
| module_instantiation
module_item_declaration ::=
parameter_declaration
| input_declaration
| output_declaration
| inout_declaration
| integer_declaration
| node_declaration
| real_declaration
parameter_override ::=
defparam list_of param_assignments

Figure 8-1: Syntax for module

8.1.1 Top-level modules

Top-level moduleare modules that are included in the source text but are not
instantiated, as described in section 8.1.2.

8.1.2 Module instantiation

Instantiation allows one module to incorporate a copy of another module into itself.
Module definitions do not nest. That is, one module definition does not contain the text

Version 1.4 Verilog-AMS Language Reference Manual 8-2

Modules Hierarchical Structures

of another module definition within iteodule-endmodulekeyword pair. A module
definition nests another module imgtantiatingit. Themodule instantiation statement
creates one or more namedtancesf a defined module.

The following is the syntax for specifying instantiations of modules:

module_instantiation ::=

module identifier [parameter_value_assignment]

instance_list
parameter_value_assignment ::=

(ordered_param_override_ljst

| # (named_param_override_ljst

ordered_param_override_list ::=

expression { expression }
named_param_override_list ::=

named_param_override, hamed_param_override }
named_param_override ::=

. parameteridentifier (constant_expressign
instance_list ::=

module_instance {module_instance }
module_instance ::=

name_of _instancé [list_of _module_connections)]
name_of _instance ::=

module_instancadentifier [range]
list_ of module_connections ::=

ordered_port_connection,{ordered_port_connection }

| named_port_connection framed_port_connection }

ordered_port_connection ::=

[expression |
named_port_connection ::=

. port_identifier([expression)
range ::=

[constant_expressiorconstant_expressign

Figure 8-2: : Syntax for module instantiation

The instantiations of modules can contain a range specification. This allows an array of
instances to be created.

One or more module instances (identical copies of a module definition) can be specified
in a single module instantiation statement.

The list of module connections can be provided only for modules defined with ports. The

parentheses, however, are always required. When a list of module connections is given,
the first element in the list connects to the first port, the second to the second port, and
so on. See section 8.3 for a more detailed discussion of ports and port connection rules.

Version 1.4 Verilog-AMS Language Reference Manual 8-3

Modules

Version 1.4

Hierarchical Structures

A connection can be a simple reference to a node identifier or a sub-range of a vector
node. The example below illustrates a comparator and an integrator (lower-level
modules) which are instantiated in sigma-delta A/D converter module (the higher-level
module).

module comparator(cout, inp, inm);
output cout;

input inp, inm;

electrical cout, inp, inm;

parameter real td = 1n, tr = 1n, tf = 1n;

analog begin
@crosgV(inp) - V(inm), 0)
V(cout) <+ transition((V(inp) > V(inm)) ? 1: 0, td, tr, tf);
end
endmodule

module integrator(out, in);
output out;

input in;

electrical in, out;
parameter real gain = 1.0;
parameter real ic = 0.0;

analog begin
V(out) <+ gain*idt(V(in), ic);

end in aa0 aal out
endmodule c1 1 c2
module sigmadelta(out, ref, in); aa2 ground
output out; D1
input ref, in; |

P ref
comparator C1(.cout(aa0), .inp(in), .inm(aa2));
integrator #(1.0) I1(.out(aal), .in(aa0));
comparator C2(out, aal, ground);
d2a #(.width(1)) D1(aa2, ref, out); /I A D/A converter

endmodule

The comparator instance C1 and the integrator instance 11 use named port connections,
whereas the comparator instance C2 and the d2a (not described here) instance D1 uses
ordered port connection.

The integrator instance 11 overrides gain parameter positionally, whereas the d2a
instance D1 overrides width parameter by named association.

Verilog-AMS Language Reference Manual 8-4

Overriding module parameter values Hierarchical Structures

8.2 Overriding module parameter values

When one module instantiates another module, it can alter the values of any parameters
declared within the instantiated module. There are three ways to alter parameter values:
thedefparam statementvhich allows assignment to parameters using their hierarchical
namesmodule instance parameter value assignment by pvdach allows values to

be assigned in-line during module instantiation in the order of their declaration, and
module instance parameter value assignment by natmeh allows values to be

assigned in-line during module instantiation by explicitly associating parameter names
with the overriding values.

8.2.1 Defparam statement

Using thedefparam statemejparameter values can be changed in any module instance
throughout the design using the hierarchical name of the parameter. See section 8.4 for
hierarchical names.

The expression on the right hand side of the defparam assignments must be a constant
expression involving only constant numbers and references to parameters. The
referenced parameters (on the right hand side of the defparam) must be declared in the
same module as the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter value
override assignments together in one module.

Version 1.4 Verilog-AMS Language Reference Manual 8-5

Overriding module parameter values Hierarchical Structures

8.2.2

Version 1.4

module tgate;

electrical iol,i02,control,control_bar;
mosn ml (iol, io2, control);

mosp m2 (iol, io2, control_bar);
endmodule

module mosp (source,drain,gate);
parameter gate_length = 0.3e-6,
gate_width = 4.0e-6;

spice_pmos #(.L(gate_length),.W(gate_width)) p(gate,source,drain);
endmodule

module mosn (source,drain,gate);
parameter gate_length = 0.3e-6,
gate_width = 4.0e-6;

spice_nmos #(.L(gate_length),.W(gate_width)) n(gate,source,drain);
endmodule

module annotate;
defparam
tgate.ml.gate_width = 5e-6,
tgate.m2.gate_width = 10e-6;
endmodule

Module instance parameter value assignment by order

An alternative method for assigning values to parameters within module instances
supplies values for particular instances of a module to any parameters that have been
specified in the definition of that module.

The order of the assignments in module instance parameter value assignment must
follow the order of declaration of the parameters within the module. It is not necessary
to assign values to all of the parameters within a module when using this method.
However, it is not possible to skip over a parameter assignment. Therefore, to assign
values to a subset of the parameters declared within a module, the declarations of the
parameters that make up this subset must precede the declarations of the remaining
(optional) parameters. An alternative is to assign values to all of the parameters, but use
the default value (the same value assigned in the declaration of the parameter within the
module definition) for those parameters that do not need new values.

Consider the following example, where the parameters within module instance mod_a
are changed during instantiation.

Verilog-AMS Language Reference Manual 8-6

Overriding module parameter values Hierarchical Structures

8.2.3

8.2.4

Version 1.4

module m;

voltage clk;

electrical out_a, in_a;
electrical out_b, in_b;

/[create an instance and set parameters
mosp #(2e-6,1e-6) weakp(out_a, in_a, clk);
/I create an instance leaving default values
mosp plainp(out_b, in_b, clk);

endmodule

Module instance parameter value assignment by name

The third method of overriding parameters for a module instance is an explicit
association between the name of the parameter and the new value being assigned to that
parameter. The name of the parameter must be preceded by a period (.) and must be the
name of a parameter in the definition of the module being instantiated. The overriding
value for each parameter must be a constant expression and must be enclosed in
parenthesis()). Only those parameters whole value is being overridden need
specification.

In the following example of instantiating a voltage-controlled oscillator, the parameters
are specified on a named-association basis much they are for ports.

vco #(.centerFreq(5000), .convGain(1000)) vcol(lo_out, rf_in);

Here, the name of the instantiated vco modulets. ThecenterFregparameter is
passed a value of 5000, and tdoamvGainparameter is passed a value of 1000. The
positional assignment mechanism for ports assignsutas the first node, and_in as
the second node otol

Parameter override precedence

If the value of a parameter is overridden using defparam statement as well as module
instance parameter value assignments (see section 8.2.2 and section 8.2.3), the value
assignment specified by the defparam statement is retained and the other value
assignments are ignored.

If the value of a parameter is overridden using one of the three forms at different levels
of module hierarchy, the value assignment done in the hierarchically highest level of
module is retained and the other value assignments are ignored.

If the hierarchical relationship between the modules containing defparam statements
cannot be determined, it must be reported as an error.

Verilog-AMS Language Reference Manual 8-7

Ports Hierarchical Structures

8.2.5 Parameter dependence

A parameter (for example, gate cap) can be defined with an expression containing
another parameter (for example, gate_width or gate_length). Since gate_cap depends on
the value of gate_width and gate_length, a modification of gate_width or gate_length
changes the value of gate_cap. For example, in the following parameter declaration, an
update of gate_width , whether by defparam statement or in an instantiation statement
for the module that defined these parameters, automatically updates gate_cap.

parameter
gate_width = 0.3e-6,
gate_length = 4.0e-6,
gate_cap = gate_length * gate_width * ‘COX;

8.3 Ports

Ports provide a means of interconnecting instances of modules. For example, if a module
A instantiates module B, the ports of module B are associated with either the ports or the
internal nodes of module A. The top-level module does not have ports, so every port is
eventually associated with a node.

831 Port association

The syntax for a port association is given below. It is the completion of the syntax
presented in section 8.1.

port ::=
port_expression
| . port_identifier([port_expression]
port_expression ::=
port_identifier
| port_identifier[constant_expressidn
| port_identifier[constant_rangke
constant_range ::=
msh constant_expressiodsb_constant_expression

Figure 8-3: Syntax for port

The port expression in the port definition can be one of the following:

— a simple node identifier
— a scalar member of a vector node or port declared within the module
— a sub-range of a vector node or port declared within the module

Version 1.4 Verilog-AMS Language Reference Manual 8-8

Ports

8.3.2

8.3.2.1

8.3.2.2

Version 1.4

Hierarchical Structures

The two types of module port definitions cannot be mixed; the ports of a particular
module definition must all be defined by order or all by name. The port expression is
optional because ports can be defined that do not connect to anything internal to the
module.

Port declarations

The type and direction of each port listed in the module definition’s list of ports are
declared in the body of the module.

Port type

The type of a port is declared by giving its discipline. If the type of a port is not declared,
the port can only be used in a structural description (it can be passed to instances of
modules, but cannot be accessed in a behavioral description).

node_declaration ::=

discipline_identifier [range] list_node_identifiers
list_node_identifiers ::=

node identifier {, node identifier }

Figure 8-4: Syntax for port type declarations

Port direction

The direction of a port can be specifiediaput, output, orinout (bidirectional). If the
direction is specified as being an input port, then the module will only monitor the
signals at the port, and not modify them. That is, within the module the port can only be
passed into other modules as input ports and the signals on the ports can only be used in
expressions, they cannot be used on the left side of a contribution statement. If the
direction is specified as being an output port, then the module will only affect the signals
at the port, but not be affected by them. Thus, the port can be passed to instances of other
modules as output ports and the signals on the ports cannot be used in expressions but
can be used on the left side of a contribution statement. Finally, ports that are declared
as being bidirectional are not subject to these restrictions. If the direction of the port is
not specified, it is taken to be bidirectional. The syntax for port declarations is as follows:

input_declaration ::#nput [range] list_of port_identifiers
output_declaration ::sutput [range] list_of port_identifiers
inout_declaration ::#nout [range] list_of _port_identifiers

Figure 8-5: Syntax for port direction declarations

Verilog-AMS Language Reference Manual 8-9

Ports

Hierarchical Structures

A port can be declared in both a port type declaration and a port direction declaration. If
a port is declared as a vector, the range specification between the two declarations of a
port must be identical.

Note: Implementations may limit maximum number of ports in a module definition, but will at least be

256.

8.3.3

Version 1.4

Real valued ports

Verilog-AMS supports ports that are declared to be real valued and have a discrete-time
discipline.

module sum(inl, in2, out);
input inl, in2;

output out;

real inl, in2, out;

logic inl, in2;

always begin
out=inl +in2;
end
endmodule

In a module instantiation a real valued port can only be bound to a real variable whose
value may be assigned only from the digital context, or to another real valued port. The
result of binding a real variable to a port is to make the variable visible in any context in
which the port is visible. Real valued ports are, therefore, subject to the same rules of
usage as real variables. They also exhibit the same behavior. For example, assignment
of a value to a real port will overwrite the existing value. Thus, if two processes attempt
to assign different values to a real variable (either directly or through a port bound to the
variable) at the same time the result is a race condition. There is no resolution of multiple
drivers as with other signal types. One of the assignments will win, but, it can not be
predetermined. It is an error to modify the value of a real port which is declared as an
input.

As with other discrete time ports (digital), a real valued port may be assigned a discipline
for purposes of connection element insertion using connect statements. In this case, the
connection module being inserted will have a real valued port of the same discipline, and
a discrete time port of some other discipline. Since itis illegal to connect the real valued
port to anything other than a real variable or port, it does not make sense to apply a
discipline which has been used to declare real ports or variables, to any other type of
object (wire, reg, etc.).

Verilog-AMS Language Reference Manual 8-10

Ports Hierarchical Structures

8.34 Connecting module ports by ordered list

One method of making the connection between the ports listed in a module instantiation
and the ports defined by the instantiated module is the ordered list—that is, the ports
listed for the module instance must be in the same order as the ports listed in the module
definition.

module adc4 (out, rem, in);

output [3:0] out ; output rem;
input in;

electrical [3:0] out;

electrical in, rem, rem_chain;

adc2 hi2 (out[3:2], rem_chain, in) ;
adc? lo2 (out[1:0], rem, rem_chain) ;
endmodule

module adc2 (out, remainder, in);

output [1:0] out ; output remainder;
input in;

electrical [1:0] out ;

electrical in, remainder, r;

adc hil (out[1], r, in) ;
adc lol (out[0], remainder, r) ;
endmodule

module adc (out, remainder, in);
output out, remainder;

input in;

electrical out, in, remainder;
integer d;

analog begin
d = (V(in) >0.5) ;
V(out) <+ transition(d) ;
V(remainder)+ 2.0 * V(in) ;
if (d)
V(remainderk+ -1.0 ;
end
endmodule

8.3.5 Connecting module ports by name

The second way to connect module ports consists of explicitly linking the two names for
each side of the connection—the name used in the module definition, followed by the
name used in the instantiating module. This compound name is then placed in the list of

Version 1.4 Verilog-AMS Language Reference Manual 8-11

Ports Hierarchical Structures

module connections. The name of port must be the name specified in the module
definition. The name of port cannot be a bit select or a part select.

The port expression must be the name used by the instantiating module and can be one
of the following:

— a simple node identifier

— a scalar member of a vector node or port declared within the module
— a sub-range of a vector node or port declared within the module

— a vector node formed as a result of the concatenation operator

The port expression is optional so that the instantiating module can document the
existence of the port without connecting it to anything. The parentheses are required.

The two types of module port connections can not be mixed; connections to the ports of
a particular module instance must be all by order or all by name.

module adc4 (out, rem, in);

input in;

output [3:0] out; output rem;
electrical [3:0] out;

electrical in, rem, rem_chain;

adc2 hi (.in(in), .out(out[3:2]), .remainder(rem_chain)) ;
adc2 lo (.in(rem_chain), .out(out[1:0]), .remainder(rem)) ;
endmodule

module adc2 (out, in, remainder);

output [1:0] out; output remainder;
input in;

electrical [1:0] out;

electrical in, remainder, r;

adc hil (out[1], r, in) ; // adc is same as defined in section 8.3.4
adc lol (out[0], remainder, r) ;
endmodule

Since these connections were made by port name, the order in which the connections
appear is irrelevant.

8.3.6 Port connection rules

The following rules govern the way module ports are declared and the way they are
interconnected.

8.3.6.1 Compatible discipline rule

All ports connected to a node must be compatible with each other as well as to the
discipline of the node. For discussion on compatible disciplines, see section 3.6.

Version 1.4 Verilog-AMS Language Reference Manual 8-12

Ports

8.3.6.2

8.3.6.3

8.3.7

Version 1.4

Hierarchical Structures

Ports of any discipline are compatible when connected to a ground node.

Matching size rule

A scalar port can be connected to a scalar node, and a vector port can be connected to a
vector node or concatenated node expression of the matching width. In other words, sizes
of the ports and nodes must match.

Resolving Discipline of Undeclared Interconnect Signal

Verilog-AMS supports undeclared interconnect between module instances when
describing hierarchical structures. That is, a signal appearing in the connection list of a
module instantiation need not appear in any port declaration or discipline declaration.

* anundeclared net segment (signal) that connects to one or more ports that are
declared with aliscretedomain discipline resolves (inherits) to thatrete
discipline.

» Ifthe ports are of differentiscretedomain disciplines then the resulting discipline
is undetermined unless there isoanect(section 7.4) statement to specify the
resulting discipline.

» If some or all of the ports are declared witntinuousdomain disciplines then the
undeclared interconnect signal resolves ¢ongnuousdomain discipline type.

Inheriting Port Natures

If a node is missing a nature, it will inherit that nature from any port that connects to it.
Typically such a situation occurs when

— a node is either implicitly or explicitly declared with an empty discipline.
— a conservative port connects to a node that is declared as a signal flow discipline.

— a signal-flow port with a potential nature connects to a signal-flow node declared
with a flow nature, or visa versa.

As additional ports connect to the same node, it is possible for conflicts to develop. For
example, connecting either an electrical or a mechanical port to a node with empty
discipline results in no conflicts, but connecting both to the same node defined with an
empty discipline does result in a conflict.

At each node there may be many different values of the absolute toleabst® This

may be because various ports connecting to the node have different, yet compatible,
natures for either the potential, the flow, or both. Even if the natures are identical, the
value ofabstol may be overridden in the discipline of one or more of the ports. In such
cases, all of the absolute tolerances must be satisfied at the node. This leads to applying
the smallest tolerance value for all calculations involving such nodes.

Verilog-AMS Language Reference Manual 8-13

Hierarchical names Hierarchical Structures

8.3.8 Multi-disciplinary example

The example below shows how an application that spans multiple disciplines can be
modeled in Verilog-AMS. The example models a DC-motor driven by a voltage source.

module motorckt();
parameter real freq=100;

electrical drive;
mechanical shaft;

motor m1 (driveground, shaft);
vsource #(.freq(freq), .ampl(1.0)) v1 (drig¥round);

endmodule

I/l vp: positive terminal [V,A] vn: negative terminal [V,A]
/I shaft:motor shaft [rad,Nm]

1

/I INSTANCE parameters

/I Km = motor constant [Vs/rad] Kf = flux constant [Nm/A]
/l'j =inertia factor [Nms~2/rad] D= drag (friction) [Nms/rad]
/I Rm = motor resistance [Ohms] Lm = motor inductance [H]

I
/I A model of a DC motor driving a shaft

module motor(vp, vn, shaft);
inout vp, vn, shaft;
electrical vp, vn ;
mechanical shaft ;

parameter real Km = 4.5, Kf = 6.2;
parameter real j = .004, D = 0.1;
parameter real Rm = 5.0, Lm = .02;

analog begin
V(vp, vn) <+ Km*W(shaft) + Rm*I(vp, vn) +ddt(Lm*I(vp, vn));
T(shaft)<+ Kf*I(vp, vn) - D*W(shaft) - ddt(j*W(shaft));
end
endmodule

8.4 Hierarchical names

Every identifier in Verilog-AMS HDL description has a unigberarchical path name
The hierarchy of modules and the definition of items such as named blocks within the
modules define these names. The hierarchy of names can be viewed as a tree structure,

Version 1.4 Verilog-AMS Language Reference Manual 8-14

Hierarchical names Hierarchical Structures

Version 1.4

where each module instance or a named begin-end block defines a new hierarchical
level, or scope, in a particular branch of the tree.

At the top of the name hierarchy are the names of modules of which no instances have
been created. It is theot of the hierarchy. Inside any module, each module instance,
and named begin-end block define a new branch of the hierarchy. Named blocks within
named blocks also create new branches.

Each node in the hierarchical name tree is treated as a separate scope with respect to
identifiers. A particular identifier can be declared at most once in any scope.

Any named object can be referenced uniquely in its full form by concatenating the names
of the module instance or named blocks that contain it. The period character (.) is used
to separate each of the names in the hierarchy. The complete path name to any object
starts at atop-level module. This path name can be used from any level in the description.
The first name in a path name can also be the top of a hierarchy that starts at the level
where the path is being used.

module samplehold (in, cntrl, out);
input in, cntrl ;

output out ;

electrical in, cntrl, out ;

electrical store, sample ;
parameter real vthresh = 0.0 ;

module amp(inp, inm, out) ;
input inp, inm ;
output out ;

electrical inp, inm, out ;
parameter real gain=1e5;

parameter real cap = 10e-9 ; analog begin
V(out) <+ gain*V(inp,inm) ;
amp opl (in, sample, sample) ; end
amp op2(store, out, out) ; endmodule
analog begin
I(store)<+ cap *ddt(V(store)) ;
if (V(cntrl) > vthresh)
V(store, samplex+ 0 ;
else
I(store, sample¥x+ O ;
end
endmodule
samplehold

opl

op2

Figure 8-6: : Hierarchy in a model

Verilog-AMS Language Reference Manual 8-15

Scope rules Hierarchical Structures

samplehold in, cntrl, out, sample, store, vthresh, cap
opl opl.inp, opl.inm, opl.out, opl.gain
op2 op2.inp, op2.inm, op2.out, op2.gain

Figure 8-7: : Hierarchical path names in a model

From within an analog block, itis possible to use hierarchical name referencing to access
signals on an external branch, but not external variables or parameters. When accessing
external branches, a branch signal (its potential or flow) can be monitored (probed), or
with source branches, contributions can be made to the output signal. However,
contributing to an external switch branch is considered illegal.

It is illegal to indirectly assign to an external branch or contribute to an external branch
that has indirect branch assignment.

8.5 Scope rules

The following two elements define a new scope in Verilog-AMS HDL:

modules

named blocks
An identifier can be used to declare only one item within a scope. This rule means it is
illegal to declare two or more variables that have the same name, or to give an instance
the same name as the name of the node connected to its output.

If an identifier is referenced directly (without a hierarchical path) within a named block,

it must be declared either locally within the named block, or within a module, or named
block that is higher in the same branch of the name tree that contains the named block.
If it is declared locally, then the local item must be used; if not, the search continue
upward until an item by that name is found or until a module boundary is encountered.
The search can cross named block boundaries, but not module boundaries.

Because of the upward searching, path names that are not strictly on a downward path
can be used.

Version 1.4 Verilog-AMS Language Reference Manual 8-16

Section 22

Using VPI routines

Sections 22 and 23 specify the Verilog Procedural Interface (VPI) for the Verilog HDL. This section describes how
the VPI routines are used, aBdction 23efines each of the routines in alphabetical order.

22.1 The VPI interface

The VPI interface provides routines that allow Verilog product users to access information contained in a Verilog
design, and that allow facilities to interact dynamically with a software product. Applications of the VPI interface can
include delay calculators and annotators, connecting a Verilog simulator with other simulation and CAE systems, and
customized debugging tasks.

The functions of the VPI interface can be grouped into two main areas:

— Dynamic software product interaction using VPI callbacks
— Access to Verilog HDL objects and simulation specific objects

22.1.1 VPI callbacks

Dynamic software product interaction shall be accomplished with a registered callback mechanism. VPI callbacks
shall allow a user to request that a Verilog HDL software product, such as a logic simulator, call a user-defined
application when a specific activity occurs. For example, the user can request that the user application my_monitor()
be called when a particular net changes value, or that my_cleanup() be called when the software product execution
has completed.

The VPI callback facility shall provide the user with the means to interact dynamically with a software product,
detecting the occurrence of value changes, advancement of time, end of simulation, etc. This feature allows
applications such as integration with other simulation systems, specialized timing checks, complex debugging
features, etc.

The reasons for which callbacks shall be provided can be separated into four categories:

— Simulation evente.g., a value change on a net or a behavioral statement execution)

— Simulation timde.g., the end of a time queue or after certain amount of time)

— Simulator action/featurée.g., the end of compile, end of simulation, restart, or enter interactive mode)
— User-defined system task or function execution

VPI callbacks shall be registered by the user with the functigrisregister_cb() andvpi_register_systf() These

routines indicate the specific reason for the callback, the application to be called, and what system and user data shall
be passed to the callback application when the callback occurs. A facility is also provided to call the callback
functions when a Verilog HDL product is first invoked. A primary use of this facility shall be for registration of user-
defined system tasks and functions.

Section 22 221

ovi
Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.1.2 VPI access to Verilog HDL objects and simulation objects

Accessible Verilog HDL objects and simulation objects and their relationships and properties are described using data
model diagrams. These diagrams are presented in 22.5. The data diagrams indicate the routines and constants that are
required to access and manipulate objects within an application environment. An associated set of routines to access
these objects is defined $ection 23.

The VPI interface also includes a set of utility routines for functions such as handle comparison, file handling, and
redirected printing, which are described in 23.12.

VPI routines provide access to objects iniastantiatedVerilog design. An instantiated design is one where each
instance of an object is uniquely accessible. For instance, if a module m contains wire w and is instantiated twice as
m1l and m2, then m1.w and m2.w are two distinct objects, each with its own set of related objects and properties.

The VPI interface is designed assémulationinterface, with access to both Verilog HDL objects and specific
simulation objects. This simulation interface is different from a hierarchical language interface, which would provide
access to HDL information but would not provide information about simulation objects.

22.1.3 Error handling

To determine if an error occurred, the routiw@_chk_error() shall be provided. Thepi_chk_error() routine shall
return a nonzero value if an error occurred in the previously called VPI routine. Callbacks can be set up for when an
error occurs as well. Thepi_chk_error() routine can provide detailed information about the error.

22.2 VVPI object classifications

VPI objects are classified with data model diagrams. These diagrams provide a graphical representation of those
objects within a Verilog design to which the VPI routines shall provide access. The diagrams shall show the
relationships between objects and the properties of each object. Objects with sufficient commonality are placed in
groups. Group relationships and properties apply to all the objects in the group.

As an example, this simplified diagram shows that thereaseato-many relationshigsom objects of typemodule
to objects of typenet, and aone-to-one relationshifrom objects of typenet to objects of typemodule. Objects of
type net have propertiesypiName, vpiVector, and vpiSize, with C data types string, Boolean, and integer

respectively.
< module ><—»< net)

-> name

str: vpiName

str: vpiFullName
-> vector

bool: vpiVector
-> size

int: vpiSize

The VPI object data diagrams are presented in 22.5.
22.2.1 Accessing object relationships and properties

The VPI interface defines the C data typewpiHandle. All objects are manipulated via iHandle variable.
Object handles can be accessed from a relationship with another object, or from a hierarchical name, as the following
example demonstrates:

22-2

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

vpiHandle net;
net = vpi_handle_by name(“top.m1.w1”, NULL);

This example call retrieves a handle to wire top.m1.wl and assigns it tepirkandle variable net. The NULL
second argument directs the routine to search for the name from the top level of the design.

The VPI interface provides generic functions for tasks, such as traversing relationships and determining property
values. One-to-one relationships are traversed with roufinehandle(). In the following example, the module that
contains net is derived from a handle to that net:

vpiHandle net, mod;
net = vpi_handle_by name(“top.m1.w1”, NULL);
mod = vpi_handle(vpiModule, net);

The call tovpi_handle() in the above example shall return a handle to module top.m1.

Properties of objects shall be derived with routines in the vpi_get family. The roytinget() returns integer and
Boolean properties. The routimpi_get_str() accesses string properties. To retrieve a pointer to the full hierarchical
name of the object referenced by handle mod, the following call would be made:

char *name = vpi_get_str(vpiFullName, mod);
In the above example, character pointer name shall now point to the string “top.m1”.

One-to-many relationships are traversed with an iteration mechanism. The rapitiiterate() creates an object of
type vpilterator , which is then passed to the routimpi_scan() to traverse the desired objects. In the following
example, each net in module top.m1 is displayed:

vpiHandle itr;
itr = vpi_iterate(vpiNet,mod);
while (net = vpi_scan(itr))
vpi_printf(“\t%s\n”, vpi_get_str(vpiFullName, net));

As the above examples illustrate, the routine naming conventiorvigi'aprefix with‘_’ word delimiters (with the
exception of callback-related defined values, which uséctiieprefix). Macro-defined types and properties have the
‘vpi’ prefix, and they use capitalization for word delimiters.

The routines for traversing Verilog HDL structures and accessing objects are desc8betiam 23.
22.2.2 Delays and values

Properties are of type integer, boolean, real or string. Delay and logic value properties, however, are more complex
and require specialized routines and associated structures. The roaingst_delays()andvpi_put_delays()use
structure pointers, where the structure contains the pertinent information about delays. Similarly, simulation values
are also handled with the routinepi_get_value()andvpi_put_value(), along with an associated set of structures.

The derivatives are handled with the routimps decl_deriv() andvpi_put_deriv().

The routines and C structures for handling delays, derivatives and logic values are preSstéidim?23.

22.3 List of VPI routines by functional category

The VPI routines can be divided into groups based on primary functionality.

— VPl routines for simulation-related callbacks

— VPl routines for system task/function callbacks

— VPl routines for traversing Verilog HDL hierarchy
— VPl routines for accessing properties of objects
— VPl routines for accessing objects from properties

22-3

ovi
I Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

— VPl routines for delay processing

— VPl routines for logic and strength value processing

— VPl routines for task parameters derivatives processing
| — VPl routines for analysis and simulation time processing

— VPl routines for miscellaneous utilities

| Tables 22-1 through 22-9 list the VPI routines by major categdegtion 23defines each of the VPI routines, listed
in alphabetical order.

Table 22-1—VPI routines for simulation related callbacks

To Use
Register a simulation-related callback vpi_register_cb()
Remove a simulation-related callback vpi_remove_ch()
Get information about a simulation-related callback vpi_get_cb_info()

Table 22-2—VPI routines for system task/function callbacks

To Use
Register a system task/function callback Vpi_register_systf()
Get information about a system task/function callback vpi_get_systf_info()

Table 22-3—VPI routines for traversing Verilog HDL hierarchy

To Use
Obtain a handle for an object with a one-to-one relationship vpi_handle()
Obtain handles for objects in a one-to-many relationship vpi_iterate()
vpi_scan()
Obtain a handles for an object in a many-to-one relationship vpi_handle_multi()

Table 22-4—VPI routines for accessing properties of objects

To Use
Get the value of objects with types of int or bool vpi_get()
Get the value of objects with types of string vpi_get_str()
| Get the value of objects with types of real vpi_get_real()

| 224

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

Table 22-5—VPI routines for accessing objects from properties

To Use
Obtain a handle for a named object vpi_handle_by name()
Obtain a handle for an indexed object vpi_handle_by_index()

Table 22-6—VPI routines for delay processing

To Use
Retrieve delays or timing limits of an object vpi_get_delays()
Write delays or timing limits to an object vpi_put_delays()

Table 22-7—VPI routines for logic, real and strength value processing

To Use
Retrieve logic value or strength value of an object vpi_get_value()
Write logic value or strength value to an object vpi_put_value()
Retrieve real value of an object vpi_get_real()

Table 22-8—VPI routines for task/function parameters derivatives processing

To Use
Declare a partial derivative between two task/function parameters vpi_decl_deriv()
Write a partial derivative value vpi_put_deriv()

Table 22-9—VPI routines for analysis and simulation time processing

To Use
Find the current simulation time or the scheduled time of future events vpi_get_time()
Find the current simulation time value in the continuous domain. vpi_get_continuous_time()
Find the current simulation time delta value in continuous domain. vpi_get_continuous_delta()
Declare a discontiuity order. vpi_decl_discontinuity()

22-5

I ovi

Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG
| Table 22-10—VPI routines for miscellaneous utilities
To Use
Write to stdout and the current log file vpi_printf()
Open a file for writing vpi_mcd_open()
Close one or more files vpi_mcd_close()
Write to one or more files vpi_mcd_printf()
Retrieve the name of an open file vpi_mcd_name()
Retrieve data about product invocation options vpi_get_vlog_info()
See if two handles refer to the same object vpi_compare_objects()
Obtain error status and error information about the previous call to|a vpi_chk_error()
VPI routine
Free memory allocated by VPI routines vpi_free_object()

| 226

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.4 Key to object model diagrams

This clause contains the keys to the symbols used in the object model diagrams. Keys are provided for objects and
classes, traversing relationships, and accessing properties.

22.4.1 Diagram key for objects and classes

Object Definition

Bold letters in a solid enclosure indicate an object definition. The

properties of the object are defined in this location.

Object Reference:

Normal letters in a solid enclosure indicate an object reference.

e —m—————

Class Definition:

Vo Tm oo \: Bold italic letters in a dotted enclosure indicate a class definition,
: __ EI@;S-? _A where the class groups other objects and classes. Properties of the
\ - ' class are defined in this location. The class definition can contain an
: ObJ defn ; object definition.
l -
object)}
ST TSI Class Reference:
_Class)

Italic letters in a dotted enclosure indicate a class reference.

Unnamed Class:

i i
\ Objl \ A dotted enclosure with no name is an unnamed class. It is sometimes

VW,‘ convenient to group objects although they shall not be referenced as a
e group elsewhere, so a name is not indicated.

22-7

ovi

Std 1364-1995

AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERI

22.4.2 Diagram key for accessing properties

(_obj)
-> vector

bool: vpiVector
-> size

int: vpiSize

Integer and Boolean properties are accessed with the rou
vpi_get().

Example: Given arspiHandle obj_h to an object of typgpiObj, get
the size of the object.

bool vect_flag = vpi_get(vpivector, obj_h);
int size = vpi_get_size(vpiSize, obj_h);

(C_ob)

-> name
str: vpiName
str: vpiFullName

String properties are accessed with routipe get_str().
Example:

char name[nameSize];
vpi_get_str(vpiName, obj_h);

LOG

tine

(object)

-> complex
funcl()
func2()

Complex properties for time and logic value are accessed with
indicated routines. See the descriptions of the routines for usage.

the

22-8

THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.4.3 Diagram key for traversing relationships

ref

A single arrow indicates ane-to-onerelationship accessed
with the routinevpi_handle().

Example: GivenvpiHandle variable ref_h of type ref, access
obj_h of typevpiObj:

obj_h = vpi_handle(vpiObj, ref_h);

ref

vpiTag

A taggedone-to-onerelationship is traversed similarly, using
vpiTag instead of/piObj :

Example:

obj_h = vpi_handle(vpiTag, ref_h);

A top-level one-to-oneaelationship is traversed similarly, using
NULL instead of ref _h:

Example:

obj_h = vpi_handle(vpiObj, NULL);

ref

@D

piall

A double arrow indicates ane-to-manyrelationship accessed
with the routinevpi_scan()

Example: GivenvpiHandle variable ref_h of type ref, scan
objects of type/piObj :

itr = vpi_iterate(vpiObj, ref _h);
while (obj_h = vpi_scan(itr))
/* process ‘obj_h’ */

ref

vpiTag

A taggedone-to-manyelationship is traversed similarly, using
vpiTag instead of/piObj :

Example:
itr = vpi_iterate(vpiTag, ref_h);

while (obj_h = vpi_scan(itr))
/* process ‘obj_h’ */

- ¢

A top-level one-to-manyrelationship is traversed similarly,
using NULL instead of ref_h:

Example:

itr = vpi_iterate(vpiObj, NULL);
while (obj_h = vpi_scan(itr))
[* process ‘obj_h' */

ovi

22-9

ovi
I Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.5 Object data model diagrams

| Subclauses 22.5.2 through 22.5.26 contain the data model diagrams that define the accessible objects and groups of
objects, along with their relationships and properties.

| 2210

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.1 Analysis

(analysis)=

-> dc analysis

bool: vpiTransientAnalysis
-> transient analysis

bool: vpiTransientAnalysis
-> start time

real: vpiContinuousStartTime
-> end time

real: vpiContinuousEndTime
-> maximum time step

real: vpiDefNetType
-> ac analysis

bool: vpiAcAnalysis
-> start frequency

real: vpiContinuousStartTime
-> end frequency

real: vpiContinuousEndTime

-> maximum time step
real: vpiContinuousMaxTimeStep

NOTES
1—Top-level modules shall be accessed uspigiterate() with a NULL reference object.

2—Passing a NULL handle tepi_get() with types vpiTimePrecision or vpiTimeUnit shall return the smallest time
precision of all modules in the instantiated design.

I 22-11

ovi
Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.5.2 Module

vpilnternalScope

o -

(module)er—»{" "scope .

> cel —»»(port)
bool: vpiCelllnstance
-> decay time > (net)

int: vpiDefDecayTime
-> default net type

int: vpiDefNetType > (' - _v_az_ rfé 5 l_e_s_ T
-> definition location ——---------- !

int: vpiDefLineNo —»(memory)
str: vpiDefFile

> definition name ——»»-(named event)
str: vpiDefName | == 0@ce-————————-

-> delay mode —»\\ pI’OCESS)
int: vpiDefDelayMode

—»(_cont assign)

-> |ocation
int: vpiLineNo
str: vpiFile - (_ _r_n_o_d_lil_e_ _)
7 name — > primitive)
str: vpiName | =00 —-T-—-——--—---

str: vpiFullName _»(mod path)
” pzootjl?f/i(ijProtected —»(tchk)
i tlmﬁﬁ;ﬁ;ﬂggrecision —»(parameter)
Sient e [—e=(BeC param)
-> top module —»»(def param)

bool: vpiTopModule

-> unconnected drive —»(param assign)
int: vpiUnconnDrive _
—»»(iodecl)

—_t—mm,m,—,—,————

I

NOTES
1—Top-level modules shall be accessed uspigiterate() with a NULL reference object.

2—Passing a NULL handle tepi_get() with types vpiTimePrecision or vpiTimeUnit shall return the smallest time
precision of all modules in the instantiated design.

22-12

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.3 Nature, Discipline

(discipline ——s»(param assign)

vpiFlowNature
PR W nature)
—————»(nature)
vpiPotentialNatur

-> name
str: vpiName
str: vpiFullName

(discipline)<e—{ nature ——s»(param assign)

nature)<fe——— S nature
(vpiChild vpiParent ()

-> name
str: vpiName
str: vpiFullName

22-13

ovi
Std 1364-1995

22.5.4 Scope, task, function, 10 declaration

AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

. scope \e——— ww(named evend)
(__module ——»»(__variables)
{taskfunc) - e (teg)

---l- {named begin)\: —»(_def param)

g \

d

named fork)

~

IS

str: vpiName
str: vpiFullName

(' module)e—0
(udpdefn)e—r1o

(parameter)

" taskfunc \14_

io decl —

o T . .
/—\t K ' -> direction
l\ as /l int: vpiDirection
(function) i
unction int: vpiLineNo
. S str: vpiFile
-> location -> hame
int: vpiLineNo str: vpiName
str: vpiFile -> scalar
bool: vpiScalar
-> size
int: vpiSize
-> vector

bool: vpiVector

(scope)
vpilnternalScope ~

| net |

! |

VDIEXDr N—— _r_e_g_ — :

“\ variables "

R =~ \

vpiLeftRange N —— _q)f'q,: -
P -

vpiRightRange (= _?)_(l_) ,: - ,)

NOTE—A Verilog HDL function shall contain an object with the same name, size, and type as the function.

22-14

THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.5 Ports

__________ - expr N
K ports \ | vpiHighConn =~~~ ~"7"7777
L
- N\
' expr

(port

N

-> connected by name

—_—m, e, m e ————

—_—em e e e —————

bool: vpiConnByName

-> delay (mipd)
vpi_get_delays()
vpi_put_delays()

-> direction
int: vpiDirection

-> explicitly named

bool: vpiExplicitName

-> index
int: vpiPortIindex
-> |ocation
int: vpiLineNo
str: vpiFile
-> name
str: vpiName
str: vpiFullName
-> scalar
bool: vpiScalar
-> size
int: vpiSize
-> vector
bool: vpiVector

NOTES

1—vpiHighConn shall indicate the hierarchically higher (closer to the top module) port connection.

2—vpiLowConn shall indicate the lower (further from the top module) port connection.

3—Propertiescalarandvectorshall indicate if the port is 1 bit or more than 1 bit. They shall not indicate anything about what

is connected to the port.

4—Propertiesndexandnameshall not apply for port bits.

5—If a port is explicitly named, then the explicit name shall be returned. If not, and a name exists, then that name shall be

returned. Otherwise, NULL shall be returned.

6—uvpiPortindex can be used to determine the port order.

ovi

22-15

ovi
Std 1364-1995

22.5.6 Nodes

(modqle)

__________ — expr h\
’ nodes \ | vpiLeftRange =~~~ """ 7"
. T,
| P N
(node)I e
pmmmmm N \ vpiRightRangé ~ ~ ~ ~ ~~~ " 7
. branches ’,«—H vpiParent |
_________ | |
. |
’\ nets \«—>: vpiBit i __________
_.__T_.____ (node bit)—»"\ expr
discipline wpindex Y\ ====-=====~

-> implicitly declared

bool: vpilmplicitDecl
-> |ocation

int: vpiLineNo

str: vpiFile
-> name

str: vpiName

str: vpiFullName
-> scalar

bool: vpiScalar
-> size

int: vpiSize
-> potential

real: vpiPotential
-> vector

bool: vpiVector

NOTES

AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

1—Propertiescalarandvectorshall indicate if the node is 1 bit or more than 1 bit.

2—Property potential shal indicate the node to ground potential

22-16

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.7 Branches

(modu.le)

e .-

o _ — expr)
,; branches | vpiLeftRange
———————————— A PR i
\ \ ' \
v —> expr ,
__________ _ branch)n vpiRightRa%g‘e“““““’
o n odes ~——\vypiParent | . N
L vpiPoshode, e——»{ contribs
C nodes j—— _ wiBit \ St
—————————— iNegNod, l T
VPINEgTo e(branch)—P\ expr \,
N B /! wpilndex ~ -~ """ TTTT°°

-> implicitly declared

bool: vpilmplicitDecl

-> |ocation
int: vpiLineNo
str: vpiFile

-> flow source
bool: vpiZFlowSrc

-> potential source
bool: vpiPotentialSrc

-> equation target

-> name

str: vpiName

str: vpiFullName
-> scalar

bool: vpiScalar
-> size

int: vpiSize
-> discipline

int: vpiDiscipline
-> potential

real: vpiPotential
-> flow

real: vpiFlow
-> vector

bool: vpiVector

bool: vpiEgnTarget

NOTES
1—Propertiescalarandvectorshall indicate if the node is 1 bit or more than 1 bit.
2— Propertypotentialshal indicate the potential @piPosNodewith respect taypiNegNode

3—Propertyflow shall indicate the flow through the branch the reference (positive sign) direction is positive to negative

22-17

ovi
Std 1364-1995

AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.5.8 Nets

Kb vpiPortinst - axnr = ‘
- RO_I’_Z'.? . vpiLeftRange ~ \ ___ ?)_(I_D(.
P mmmm——_— l, ——————— \
__ports) — > expr)

“““““ vpiHighConn vpiRightRange 7=l
(assign stmt)
vpiLowConn Raainininit _ |
," nets \ vpiLoad \, " T TTTTTC \j
e e (force)

module)=—mp t -

ot ne A
|
: vpiParent

—».(prim term)

|
| |
\ v~ ; N\
——— = CONt assign
vpiDelay : : l g %.'
S - -] e
__expr = e _ports.
| \ ~—————— -7
| |
PR N . . »»(path term)
(___nodes ia——ro I
|
|
|
|

-> delay
vpi_get_delays()
-> expanded
bool: vpiExpanded
-> implicitly declared
bool: vpilmplicitDecl
-> |ocation
int: vpiLineNo
str: vpiFile
-> name

str: vpiName
str: vpiFullName

NOTES

|
[>
net blt o vpilndex \ - _g)f'q,: .
-> net decl assign -> strength

bool: vpiNetDeclAssign
-> net type
int: vpiNetType
-> scalar
bool: vpiScalar
-> scalared declaration
bool: vpiExplicitScalared
-> size
int: vpiSize
-> domain
int vpiDomain

1—For vectors, net bits shall be available regardless of vector expansion.

int: vpiStrengthO
int: vpiStrength1
int: vpiChargeStrength
-> value
vpi_get_value()
vpi_put _value()
-> vector
bool: vpiVector
-> vectored declaration
bool: vpiExplicitVectored

2—Continuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.

3—Continuous assignments and primitive terminals shall only be accessed from scalar nets or bit selects.

4—ForvpiPortinst andvpiPort, if the reference handle is a bit or the entire vector, the relationships shall return a handle to
either a port bit or the entire port, respectively.

5—For implicit netsypiLineNo shall returrD, andvpiFile shall return the filename where the implicit net is first referenced.

6—Only active forces and assign statements shall be returnegilfoad.

7—Only active forces shall be returned ¥piDriver .

8—vpiDriver shall also return ports that are driven by objects other than nets and net bits.

| 2218

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.9 Regs
ST T T oo oo =~ vpiPortinst ,~~ -~~~ "7777
__ports_) __ports
vpiLowConn vpiHighConn ,V/ _________ \
{ force)
joTTIT I vpiDriver assign stmt)
" regs) (assign stm
e e e e + ! - |
-
| | :(prim term)
| | |
\ \ ; \ \
_________ \ \ | vpiLoad \ - |
2l N\
" scope e req) L yp{cont as&gn)
__________ I\ \ - - - -
\vpiParent N e
— !
: : vpiLeftRange ____ef(P_r___«'l
| 0
\ \ - N\
——— P
: ' | vpiRightRange™ _ _ _ expr
\ o \
\ vpiBit \
—>
| | (tchk term)
| |
D N\
(regbit e expr)
-> |ocation
int: vpiLineNo
str: vpiFile
-> name
str: vpiName
str: vpiFullName
-> scalar
bool: vpiScalar
-> size
int: vpiSize
-> value
vpi_get value()
vpi_put_value()
-> vector
bool: vpiVector
NOTES

1—Continuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.
2—Continuous assignments and primitive terminals shall only be accessed from scalar regs and bit selects.

3—Only active forces and assign statements shall be returnegilfoad andvpiDriver .

| 22-19

ovi
Std 1364-1995

22.5.10 Variables, named event

AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

ST T T vpiPortinst ,~ == —=-"====-=
\ ports \,« g ports \,
vpiLowConn
———————————— N
ST T I oo -7 expr -
___Scope \<e——»" vyariables , - - oo
___________ - ' A vpilndex
T expr | e———— Cint '
. Pl integer var j<4——
——————————— vpiLeftRange ,'\ g \vpiParent
| |
T avpr N time var)Jet——
expr B i
N pr___. vpiRightRange | \ VP iParent
real var)
\ I'
I - ;
-> array
bool: vpiArra
N (var select)—
-> |ocation
int: vpiLineNo -> location
str: vpiFile int: vpiLineNo
-> name str: vpiFile
str: vpiName -> value
str: vpiFullName vpi_get value()
-> size vpi_put_value()
int: vpiSize
->value
vpi_get value()
vpi_put_value()
-> domain
int: vpiDomain
(scope rews(named event)

-> |ocation
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

NOTE—vpiLeftRange andvpiRightRange shall be invalid for reals, since there cannot be arrays of reals.

| 2220

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.11 Memory

‘l S COP e) vpiLeftRange jommmmmmm——— - N
TTTTA T - ™ expr !
. ST T Avmr ™
vpiRightRange ™\ - - - expr .
vpiParent
C memory]
-> |ocation
int: vpiLineNo
str: vpiFie
-> name . \ eXp r)
str: vpiName | =0 0—————Sf-——-- -
str: vpiFullName vpilndex
-> size Lonn
int: vpiSize vpiLeftRange — ------------ N
g I \ eXpI’)

i . —-— - == T e - - 4
—>>(memory word)— TIIzzIliiIs -
\
) vpiRightRange \ _ _ _ 7127 _ _ _
-> |ocation
int: vpiLineNo
str: vpiFile
-> Name
str: vpiName
str: vpiFullName
-> size
int: vpiSize
->value
vpi_get_value()
vpi_put_value()

NOTES
1—uvpiSizefor a memory shall return the number of words in the memory.

2—uvpiSizefor a memory word shall return the number of bits in the word.

22-21

ovi
I Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.5.12 Parameter, specparam

'\ scope u—»»(parameter >—>\ expr 0
-> constant type
int: vpiConstType
-> location
int: vpiLineNo
str: vpiFile
-> name
str: vpiName
str: vpiFullName

-> value
vpi_get_value()

(mostte w—wespecpaam e epr

-> constant type
int: vpiConstType
-> |ocation
int: vpiLineNo
str: vpiFile
-> nName
str: vpiName
str: vpiFullName
-> value
vpi_get_value()

—(_ parameter)
vpiLhs
module def param)—
___________ AN

-> |ocation i
int: vpiLineNo VoiRhs —-- _?)_('l_),: _———- '
str: vpiFile P

. vpiLhs
module param assign —

-> |ocation ‘
. - — XPDr }
int: vpiLineNo VpiRhs N _e_ _p_ _——
str: vpiFile

NOTES

1—Obtaining the value from the objegarameter shall return the final value of the parameter after all module instantiation
overrides and defparams have been resolved.

2—uvpiLhs from a param assign object shall return a handle to the overridden parameter.

| 2222

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.13 Primitive, prim term

(" module)
________________ e

’ expr \M primitive \,4—»(prim term)

N2 - btm—m—m—m———————— A
:(gate) -> direction
: : int: vpiDirection
. . -> index
:C switch), int: vpiTermindex
\ \ .
) | \ -> |ocation
(Udp defn |< Udp) int: vpiLineNo
\ - : str: vpiFile
(device) -> value
S vpi_get _value()

-> definition name
str: vpiDefName
-> delay
vpi_get_delays()
vpi_put_delays()
-> |ocation
int: vpiLineNo
str: vpiFile
-> name
str: vpiName
str: vpiFullName
-> primitive type
int: vpiPrimType
-> number of inputs
int: vpiSize
->strength
int: vpiStrengthO
int: vpiStrength1
-> value
vpi_get_value()
vpi_put_value()
-> domain
int: vpiDomain

NOTES
1—vpiSize shall return the number of inputs.

2—For primitivesvpi_put_value() shall only be used with sequential UDP primitives.

| 22-23

ovi
Std 1364-1995

22.5.14 UDP

C udp defn)4

O (udp

AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

-> definition name
str: vpiDefName
-> |ocation
int: vpiLineNo
str: vpiFile
-> number of inputs
int: vpiSize
-> protected
bool: vpiProtected

->type
int: vpiPrimType

»(io decl)

»C table entry)

-> |ocation
int: vpiLineNo
str: vpiFile
-> number of symbol entries
int: vpiSize
-> value
vpi_get_value()

~(il)

NOTE—Only string (decompilation) and vector (ASCII values) shall be obtained for table entry objectspisiggt_value()
Refer to the definition ofpi_get_value()for additional details.

22-24

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.15 Module path, timing check, intermodule path

(module) TTTT I S ST ‘
P
wpbelay S\ ___SXPT__ ___expr
(mod path)= »»(_ pathterm)
vpiModPathin . -

-> delay vpiModPathOut ~ -> direction
vpi_get_delays() vpiModDataPathin int: vpiDirection
vpi_put_delays() -> edge

-> |ocation ST ‘é)‘(": TN int: vpiEdge
";t", vp '.LI__'.';eNO vpiCondition =~ ______ '? e -> location
str-vpiriie int: vpiLineNo

-> path type str: vpiFile
int: vpiPathType

-> polarity
/:nt: vp{Polarity . .
int: vpiDataPolarity qnter mod path) " ports \'

-> haslfNone N, O, .
bool: vpiModPathHasIfNone -> delay

vpi_get_delay()
vpi_put_delay()

C module)

ST T T T N
vpipeiay &\ ____EXPT_
tchk term)—
C tchk vpiTchkRefTerm (
> limit vpiTchkDataTerm -> e(_ig.e '
vpi_get_delays() int: Yp/Edge
vpi_put_delays() -> |ocation
-> location int: vpiLineNo
int: vpiLineNo str: vpiFile
str: vpiFile
-> tchk type ’ expr -]
int: vpiTchkType . -
vpiTchkNotifier ¢ avpr
mm oo ! _—-- N _e_X_p_r_ o ,"<VpiCondition

—_—m e, m,m,— e ———

NOTES

1—ThevpiTchkRefTerm is the first terminal for all tchks excefsetup wherevpiTchkDataTerm is the first terminal and
vpiTchkRefTerm is the second terminal.

2—To get to an intermodule patipi_handle_multi(vpilnterModPath, portl, port2) can be used.

22-25

ovi
I Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.5.16 Task and function call

(task H task call

r
_SYys task call P

| |
O vpiSysTfCall >lf \: user SyStf)
_SYys func call) > systfinfo
p_vpi_systf data:
vpi_get_systf_info()

\-> user defined \
: bool: vpiUserDefn :
1-> value l
| vpiput value()
: vpi_get value() :
1-> sys func type \
\ " int: vpiSysFuncType |

1

\§ .

.
.
B e

-> tf name
str: vpiName
-> |ocation
int: vpiLineNo
str: vpiFile

NOTES
1—The system task or function that invoked an application shall be accessegiwligndle(vpiSysTfCall, NULL)
2—uvpi_get_value()shall return the current value of the system function.

3—If the vpiUserDefn property of a system task or function call is true, then the properties of the corresponding systf object
shall be obtained viepi_get_systf_info()

4—All user-defined system tasks or functions shall be retrieved wgingterate(), with vpiUserSystfas the type argument,
and a NULL reference argument.

| 2226

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.17 Continuous assignment

— expr
VpiRhs N = ==—===-=--~ .
(module Hcont assign pmmmmm—m N
—,>\ expr)
-> delay wiLhs N ===-—-==-=---
vpi_get_delays() P .
-> location '\ expr)
int: vpiLineNo vpiDelay > === -=-----°
str: vpiFile

-> net decl assign

bool: vpiNetDeclAssign
-> strength

int: vpiStrengthO

int: vpiStrength1

22-27

ovi
I Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.5.18 Simple expressions

< 'simple expr ™\ S \
|TIIIZIIIIIIIn wpiusey prim term)
v nets A I :
LIITIIIIIIIIN (path term).
o _Tegs . | |
P— R K tchk term)
\ variables | R !
i : v port
(parameter) LT |
I | ‘o stmt

-> name Vp/’[ndex\ ___________ .
str: vpiName
str: vpiFullName

NOTES
1—For vectors, thepiUserelationship shall access any use of the vector or part-selects or bit-selects thereof.

2—For bit-selects, thepiUserelationship shall access any specific use of that bit, any use of the parent vector, and any part-
select that contains that bit.

| 2228

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.19 Expressions

AN
/ expr \
fm— - — - 1
- -—"—-"—-—-—=—==-=-"= \
| _simple expr
: vpiParent | ',————-e_x__r___“
: vpiLeftRange Neaaa 2 Q —_————

.(part select j— .

/

1 -> |ocation BT —_ expr '
: int: vpiLineNo VpiRightRange - - - ——Z1————— ’
\ str: vpiFile

|

| . ST T T o T T
.C operatlon vpiOperand ____e_X—p—r———- '

| -> operation type
\ int: vpiOpType
| -> location
int: vpiLineNo
str: vpiFile

'(constant

-> constant type
int:
vpiConstType

-> location
int: vpiLineNo

.(func call):

:(sys func call)

NS N

.(dddt). —»(_ discipline)

|
‘(accessfunc]—

U

. , —»(branches)

-> size
int: vpiSize

-> value
vpi_get_value()

NOTE—For an operator whose typevgMultiConcat , the first operand shall be the multiplier expression.

| 22-29

ovi
I Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.5.20 Contribs

7 contribs |
R il i =+
| |
| - —m === - | o m = -
. 3] \
(_ind flow vpiLhs N S
! [
< a) T \
ind potential ‘
:t D {', vpiRhs ____&8xpr __ .
e mmmmm————— L 2
_branches 'e—— :
___________ | - .
\~
\ flow). T me
\ - \ - \ ~ ’,
l'(potential j‘. WiRhs Nmmm==to-e-
\ S mm - ",'
-> value
vpi_get_value()
-> direct
bool:vpiDirect
-> flow

bool: vpiFlow

| 2230

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.21 Process, block, statement, event statement

(module)

__.seope

7 process . stmt O\ N
ity : SIIIIzIzIIIIn /- atomic stmt
(initial) " block C i)
(aways) “atomicstmi | (__irelse)
: : T (while)
\(analog) (repeat)
Ssaton (wait)
. (case)
.(for)

R R (delay control)
:':___?{O_C_’f___\J—»(~stmt) (event control)
| bogin)' (_event stmt)
| | (_assignment)
l@amed begm)i (_assign stmt)
:C Py)‘ (_ deassign)
| : (disable)
(named fork >: T tfeall

N — - — — - |

> location (_ forever)
int: vpiLineNo |
str: vpiFile |(force)I

@vent stmt ‘->’)—>(named evenD

E(release).
:(null stmt)

__contribs D
-> |ocation _ __________ 4

int: vpiLineNo
str: vpiFile

ovi
Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.5.22 Assignment, delay control, event control, repeat control

P e delay control)
'\ expr r—
““““““ {assignment event COHUOD
e mmmm——— = —~ VpIiRhs -
! expr \g ‘ -> blocking
___________ o bool: vpiBlocking _>€epeat contro)
-> |ocation
int: vpiLineNo
str: vpiFile

@elay control ‘#)——n stmt)

-> delay e
vpi_get_delays() vpiDelay ,--=-—-------- -
-> location > expr
int: vpiLineNo
str: vpiFile
. vpiCondition .-======7< N
(event control ‘@’ Yot o |
_ expr \
-> location il !
int: vpiLineNo \ N
str: vpiFile : :
@amed evenD
> stmt)
(repeat control)7_» expr)
-> |ocation
int: vpiLineNo
str: vpiFile —»(event CO ntroD

NOTE—For delay control and event control associated with assignment, the statement shall always be NULL.

22-32

THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.23 While, repeat, wait, for, forever

ovi

m e ————— — — -

—_—m e, m, m—m————

- -
(wait)
-> location
int: vpiLineNo
str: vpiFile
(for) ———p
vpiForlnitStmt
-> |ocation emmmmmmm— -
int: vpiLineNo - — >‘\
str: vpiFile vpiCondition
>‘I
vpiForincStmt

(forever)—»

-> |ocation
int: vpiLineNo
str: vpiFile

QR iy Sy Ny S

—_E—m, e, e, e, —,—_————

22-33

ovi
Std 1364-1995

AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.5.24 If, if-else, case
2 - N\t expr)
(if) vpiCondition — - - - 2 _ ___ .
| vl ___
| \ ', \
!
| | . stmt
! \
y . \ kb N
(if else)—P\ stmt)
’,' VpiElseStmt - ----------~ ’
-> |ocation
int: vpiLineNo
str: vpiFile
ST T T T EEE T .
— case . — ____e_)ip_r___—ll
vpiCondition
-> case type
int: vpiCaseType
-> |ocation
int: vpiLineNo
str: vpiFile
»C case item)——»\ expr)
-> |ocation
int: vpiLineNo
str: vpiFile
—>\ stmt \
wiStmt ST """ - -T-—=- ’
NOTES

1—Thecase itenshall group all case conditions that branch to the same statement.

2—uvpi_iterate() shall return NULL for the default case item since there is no expression with the default case.

22-34

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

22.5.25 Assign statement, deassign, force, release, disable

e — expr)
.(force . VpiRhs N — -~ AZ .
— — S .
(assignstmt } L o™ Texpr)
—————————— = VpiLhs N == ———2——= ==’
-> |ocation
int: vpiLineNo
str: vpiFile
(deassign) R
! - ___expr)
'(release)‘ VpiLhs === === =~~~-
>location
int: vpiLineNo
str: vpiFile

. / N\
C disable W function)

L
-> |ocation &
int: vpiLineNo \ \
str: vpiFile (task)l

'(named fork):

'(named begirDl
X

22-35

ovi
Std 1364-1995 AMS HARDWARE DESCRIPTION LANGUAGE BASED ON VERILOG

22.5.26 Callback, time queue

ST T T === \
(callback)«——w\ expr)
-> cb info
p_cb_data: .
vpi_get_cb_info() 4>(prim term)
—_ stmt :

—»(time queue)
vpiParent

Ctime gqueue)

-> time
vpi_get_time()

NOTES

1—To get information about the callback object, the routpieget_cb_info()can be used.

2—To get callback objects not related to the above objects, the second arguperiterate() shall be NULL.
3—The time queue objects shall be returned in increasing order of simulation time.

4—vpi_iterate() shall return NULL if there is nothing left in the simulation queue.

5—If any events after read only sync remain in the current queue, then it shall not be returned as part of the iteration.

22-36

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

Section 24

VPI routine definitions

This section describes the Verilog Procedural Interface (VPI) routines, explaining their function, syntax, and usage.
The routines are listed in alphabetical order. Seetion 20 for the corantions used in the definitions of the PLI
routines.

24-1
Standards Draft, subject to change.

OVI (Draft 1)

Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.1 vpi_chk_error()

vpi_chk_error()

Synopsis: Retrieve information about VPI routine errors.
Syntax: vpi_chk_error(error_info_p)

Type Description
Returns: int returns the error severity level if the previous VPI routine call resulted in an error ghd

FALSE if no error occurred

Type Name Description

Arguments: p_vpi_error_info error_info_p Pointer to a structure containing error information

The VPI routinevpi_chk_error() shall return an integer constant representing an error severity level if the previous
call to a VPI routine resulted in an error. The error contants are shown in Table 24-1. If the previous call to a VPI
routine did not result in an error, thepi_chk_error() shall return FALSE. The error status shall be reset by any VPI
routine call excepgpi_chk_error(). Callingvpi_chk_error() shall have no effect on the error status.

Table 24-1—Return error constants for vpi_chk_error()

Error Constant Severity Level
vpiNotice lowest severity
vpiWarning
VpiError
vpiSystem
vpilnternal highest severity

If an error occurred, the s_vpi_error_info structure shall contain information about the error. If the error information
is not needed, a NULL can be passed to the routine. The s_vpi_error_info structure ugeid dhk_error() is
defined in vpi_user.h and is listed in Figure 24-1.

typedef struct t_vpi_error_info {
int state; [* vpi[Compile,PLI,Run] */
int level; * vpi[Notice, Warning, Error, System, Internal] */

char *message;
char *product;
char *code;
char *file;

int line;

} s_vpi_error_info, *p_vpi_error_info;

24-2

Figure 24-1—The s_vpi_error_info structure definition

Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.2 vpi_compare_objects()

vpi_compare_objects()

Synopsis: Compare two handles to determine if they reference the same object.
Syntax: vpi_compare_objects(obj1, obj2)

Type Description
Returns: bool true if the two handles refer to the same object. Otherwise, false

Type Name Description
Arguments: vpiHandle obj1 Handle to an object

vpiHandle obj2 Handle to an object

The VPI routinevpi_compare_objects(shall return true if the two handles refer to the same object. Otherwise, false
shall be returned. Handle equivalence cannot be determined with a C ‘=="comparison.

24-3
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.3 vpi_decl_deriv()

vpi_decl_deriv()

Synopsis: Declare a partial derivative of one argument or return value with respect tyo another.
Syntax: vpi_decl_deriv(var,wrt)

Type Description
Returns: bool true on success and false on failure

Type Name Description
Arguments: int var argument for which partial derivative is to be given

int wrt argument with respect to which derivative is taken

The VPI routinevpi_decl_deriv() shall be used in the compile_tf callback to pre-allocate space for a partial
derivative. This function is available to analog tasks and functions only. The purpose of this function is declarative
only, it does not assign any value to the derivative being declared. Having declared a partial derivative using this
function in the compile_tf callback, values may then be contributed to the derivative usinf the vpi_put_deriv function
in the call_tf call back.

The value returned by a function is usually a function of one or more of the arguments and because a function or task
may modify the values of its arguments any argument may be a function of one ore more other arguments. Thus it is
possible (though not necessary) that there will be a partial derivative of the returned value with respect to any or all of
the arguments and that there will be a partial derivative of any particular argument with respect to any or all of the
other arguments.

The values passed tepi_decl_deriv() are integers. The first indicates the value for which a partial derivative is to be
declated. Zero indicates the returned value, one represents the first argument, two the second argument, and so on.
The second indicates the value with respect to which the deravitive being declared will be calculated. For example
vpi_decl_deriv(0,3)would indicate the partial derivative of the returned vale with respect to the third argument.

24-4
Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.4 vpi_decl_discontinuity()

vpi_decl_disconitnuity()
Synopsis: Announce discontinuity in a continuously varying quintity to the simulator
Syntax: vpi_decl_discontinuity()
Type Description
Returns: void
Type Name Description
Arguments: int order the order of the discontinuity

The VPI routinevpi_decl_discontinuity() shall be used to announce discontinuity in values associated with variables
which affects simulation. An abrupt change in the value of a variable or in the value of any of its derivatives are
examples of discontinuity. If the analog simulation algorithm uses special techniques for dealing with
discontinuitiues, a call to this function may serve as a signal to employ them.

This function is available to analog tasks and functions only.

24-5
Standards Draft, subject to change.

| OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

| 245 vpi_free_object()

vpi_free_object()
Synopsis: Free memory allocated by VPI routines.
Syntax: vpi_free_object(obj)
Type Description
Returns: bool true on success and false on failure
Type Name Description
Arguments: vpiHandle obj Handle of an object

The VPI routinevpi_free_object()shall free memory allocated for objects. It shall generally be used to free memory
created for iterator objects. The iterator object shall automatically be freed wiiescan() returns NULL either
because it has completed an object traversal or encountered an error condition. If neither of these conditions occur
(which can happen if the code breaks out of an iteration loop before it has scanned every ghjetée_object()

should be called to free any memory allocated for the iterator. This routine can also optionally be used for
implementations that have to allocate memory for objects. The routine shall return true on success and false on
failure.

24-6

Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.6 vpi_get()

vpi_get()

Synopsis: Get the value of an integer or Boolean property of an object.
Syntax: vpi_get(prop, obj)

Type Description
Returns: int Value of an integer or Boolean property

Type Name Description
Arguments: int prop An integer constant representing the property of an oljject

for which to obtain a value
vpiHandle obj Handle to an object

Related Use vpi_get_str() to get string properties
routines:

The VPI routinevpi_get() shall return the value of object properties, for properties of tgpandbool (bool shall be
defined toint). Object properties of typbool shall returnl for true andO for false. For object properties of tyjet
such asvpiSize any integer shall be returned. For object properties of tgpéhat return a defined value, refer to
Annex C for the walue that shall be returned. Note for object propestyTimeUnit or vpiTimePrecision, if the
object is NULL, then the simulation time unit shall be returned. Should an error ogpurget() shall return
PTE-093| VvpiUndefined.

24-7
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.7 vpi_get cb_info()

vpi_get_cb_info()

Synopsis: Retrieve information about a simulation-related callback.
Syntax: vpi_get_cb_info(obj, cb_data_p)

Type Description
Returns: void

Type Name Description
Arguments: vpiHandle obj Handle to a simulation-related callback

p_cb_data cb_data_p Pointer to a structure containing callback informatiof

Related Use vpi_get_systf_info() to retrieve information about a system task/function callback
routines:

The VPI routinevpi_get_cb_info() shall return information about a simulation-related callback in an s_cb_data
structure. The memory for this structure shall be allocated by the user.

The s_cb_data structure usedvpy get cb_info()is defined in vpi_user.h and is listed in Figure 24-2.

typedef struct t_cb_data {
int reason;
int (*cb_rtn)();
vpiHandle obj;

p_vpi_time time; [* structure with simulation time info */
p_vpi_value value; /* structure with simulation value info */
char *user_data; [* user data to be passed to callback function */

}s_cb_data, *p_cb_data;

Figure 24-2—The s_cb_data structure definition

24-8
Standards Draft, subject to change.

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.8 vpi_get _continuous_delta()

vpi_get_continuous delta()
Synopsis: Get the time elapsed since the previous solution..
Syntax: vpi_get_continuous_delta()
Type true on success and false on failureDescription
Returns: double time elapsed between the solution being calculated and the last converged solutifin
Type Name Description
Arguments: NONE this function accepts no arguments

The VPI routinevpi_get_continuous_delta(shall be used determin the size of the analog time step being attempted
it returns the elapsed time between the latest converged and accepted solution and the solution being calculated. The
function will return zero during DC or the time zero transient solution.

24-9
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.9 vpi_get_continuous_time()

vpi_get_continuous time()
Synopsis: Get the time of the current solution..
Syntax: vpi_get_continuous_time()
Type true on success and false on failureDescription
Returns: double time associated with the current solution
Type Name Description
Arguments: NONE this function accepts no arguments

The VPI routinevpi_get_continuous_time()shall be used determin the time of the solution attempted during an
attempt, or of the latest converged and accepted solution otherwise. The function will return zero during DC or the
time zero transient solution.

24-10
Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

| 24.10 vpi_get delays()

vpi_get_delays()

Synopsis: Retrieve the delays or pulse limits of an object.
Syntax: vpi_get_delays(obj, delay_p)

Type Description
Returns: void

Type Name Description
Arguments: vpiHandle obj Handle to an object

p_vpi_delay delay_p Pointer to a structure containing delay information

Related Use vpi_put_delays() to set the delays or timing limits of an object
routines:

The VPI routinevpi_get delays()shall retrieve the delays or pulse limits of an object and place them in an
s_vpi_delay structure that has been allocated by the user. The format of the delay information shall be controlled by
thetime_typeflag in the s_vpi_delay structure. This routine shall ignore the value di/ffeflag in the s_vpi_time
structure.

The s_vpi_delay and s_vpi_time structures used by lpihget delays()and vpi_put_delays() are defined in
vpi_user.h and are listed in Figures 24-3 and 24-4.

typedef struct t_vpi_delay {

struct t_vpi_time *da; [* ptr to user allocated array of delay
values */

int no_of_delays; /* number of delays */

int time_type; [* [vpiScaledRealTime, vpiSimTime] */

bool mtm_flag; [* true for mtm */

bool append_flag; /* true for append, false for replace */

bool pulsere_flag; [* true for pulsere values */

} s_vpi_delay, *p_vpi_delay;

Figure 24-3—The s_vpi_delay structure definition

typedef struct t_vpi_time

{
int type; [* [vpiScaledRealTime, vpiSimTime] */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;

Figure 24-4—The s_vpi_time structure definition

Thedafield of the s_vpi_delay structure shall be a user-allocated array of s_vpi_time structures. This array shall store
delay values returned wpi_get_delays() The number of elements in this array shall be determined by

— The number of delays to be retrieved

24-11
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

— Themtm_flag setting
— Thepulsere_flagsetting

The number of delays to be retrieved shall be set imiheof delaydield of the s_vpi_delay structure. Legal values
for the number of delays shall be determined by the type of object.

— For primitive objects, thao_of delaywvalue shall be 2 or 3.

— For path delay objects, tm®_of delaysalue shall be 1, 2, 3, 6, or 12.

— For timing check objects, theo_of delaysvalue shall match the number of limits existing in the timing
check.

— For intermodule path objects, the_of delaywvalue shall be 2 or 3.

The user allocated s_vpi_delay array shall contain delays in the same order in which they occur in the Verilog HDL
description. The number of elements for each delay shall be determined by themffagfiag andpulsere_flag as
shown in Table 24-2.

Table 24-2—Size of the s_vpi_delay->da array

Number of s_vpi_time array elements Order in which delay elements

Flag values required for s_vpi_delay->da shall be filled

mtm_flag = false 1st delay: da[0] -> 1st delay
pulsere_flag= false no_of_delays 2nd delay: da[1] -> 2nd delay

mtm_flag = true 1st delay: da0] -> min delay
pulsere_flag= false 3 *no_of_delays da[1] -> typ delay
da[2] -> max delay
2nd delay: ...

mtm_flag = false 1st delay: da[0] -> delay

pulsere_flag= true 3 *no_of_delays da[1] -> reject limit
da[2] -> error limit

2nd delay element: ...

mtm_flag = true 1st delay: da0] -> min delay
pulsere_flag= true 9 *no_of_delays da[1] -> typ delay
da[2] -> max delay
da[3] -> min reject
da[4] -> typ reject
da[5] -> max reject
da[6] -> min error
da[7] -> typ error
da[8] -> max error

2nd delay: ...

The delay structure has to be allocated before passing a pointgi_tget_delays() In the following example, a
static structureprim_da, is allocated for use by each call to #pé_get_delays()function.

display_prim_delays(prim)
vpiHandle prim;t2

{
static s_vpi_timerim_da[3];
static s_vpi_delay delay_s = {NULL, 3, vpiScaledRealTime};
static p_vpi_delay delay p = &delay_s;

delay_s.da = frim_da;

vpi_get_delaygprim, delay_p);

24-12
Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

vpi_printf(“Delays for primitive %s: %6.2f %6.2f %6.2\n”",vpi_get_str(vpiFullName, prim)
delay_p->da[0].real, delay_p->da[1].real, delay p->da[2].real);

24-13
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.11 vpi_get_str()

vpi_get_str()

routines:

Synopsis: Get the value of a string property of an object.
Syntax: vpi_get_str(prop, obj)

Type Description
Returns: char * Pointer to a character string containing the property value

Type Name Description
Arguments: int prop An integer constant representing the property of an ol

for which to obtain a value
vpiHandle obj Handle to an object

Related Use vpi_get() to get integer and Boolean properties

ect

The VPI routinevpi_get_str() shall return string property values. The string shall be placed in a temporary buffer that
shall be used by every call to this routine. If the string is to be used after a subsequent call, the string should be copied
to another location. Note that a different string buffer shall be used for string values returned through the s_vpi_value

structure.

The following example illustrates the usage/pif_get_str().

char *str;

vpiHandle mod = vpi_handle_by name(“top.mod1”,NULL);
vpi_printf (“Module top.mod1 is an instance of %s\n”,
vpi_get_str(vpiDefName, mod));

24-14

Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.12 vpi_get systf info()

vpi_get_systf_info()

Synopsis: Retrieve information about a user-defined system task/function-related callback.
Syntax: vpi_get_systf_info(obj, systf_data_p)

Type Description
Returns: void

Type Name Description
Arguments: vpiHandle obj Handle to a system task/function-related callback

p_vpi_systf _data systf_data_p Pointer to a structure containing callback informatiop

Related Use vpi_get_cb_info() to retrieve information about a simulation-related callback
routines:

The VPI routinevpi_get_systf_info()shall return information about a user-defined system task or function callback
in an s_vpi_systf data structure. The memory for this structure shall be allocated by the user.

The s_vpi_systf data structure usedvpy get_systf info()is defined in vpi_user.h and is listed in Figure 24-5.

typedef struct t_vpi_systf_data {

int type; [* vpiSys[Task,Function] */
int sysfunctype; /* vpi[IntFunc,RealFunc, TimeFunc,SizedFunc] */
char *tfname; [* first character must be “$" */

int (*calltf)();
int (*compiletf)();
int (*sizetf)(); [* for vpiSizedFunc system functions only */
char *user_data;
} s_vpi_systf_data, *p_vpi_systf data;

Figure 24-5—The s_vpi_systf_data structure definition

24-15
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.13 vpi_get_time()

vpi_get_time()

Synopsis: Retrieve the current simulation.
Syntax: vpi_get_time(obj, time_p)

Type Description
Returns: void

Type Name Description
Arguments: vpiHandle obj Handle to an object

p_vpi_time time_p Pointer to a structure containing time information

Related
routines:

The VPI routinevpi_get_time() shall retrieve the current simulation time, using the time scale of the objexdij i§
NULL, the simulation time is retrieved using the simulation time unit. Tilvee_p->typefield shall be set to indicate
if scaled real, continuous, or simulation time is desired. The memory fdirtiee pstructure shall be allocated by the

user.

The s_vpi_time structure used tagi_get_time()is defined in vpi_user.h and is listed in Figure 24-6 [this is the same

time structure as used bpi_put_value()].

typedef struct t_vpi_time {
int type;

double real;
} s_vpi_time, *p_vpi_time;

/* for vpiScaledRealTime, vpiSimTime, vpiContinuousTime */
unsigned int high, low; /* for vpiSimTime */
[* for vpiScaledRealTime or vpiContinuousTime */

Figure 24-6—The s_vpi_time structure definition

24-16

Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.14 vpi_get value()

vpi_get_value()

Synopsis: Retrieve the simulation value of an object.
Syntax: vpi_get_value(obj, value_p)

Type Description
Returns: void

Type Name Description
Arguments: vpiHandle obj Handle to an expression

p_vpi_value value_p Pointer to a structure containing value information

Related Use vpi_put_value() to set the value of an object
routines:

The VPI routinevpi_get_value()shall retrieve the simulation value of VPI objects. The value shall be placed in an
s_vpi_value structure, which has been allocated by the user. The format of the value shall be skirhyattiield of
the structure.

When theformatfield is vpiObjTypeVal, the routine shall fill in the value and change thematfield based on the
object type, as follows:

— For an integetypilntVal

— For arealypiRealVal

— For a scalar, eithespiScalar or vpiStrength

— For a time variableypiTimeVal with vpiSimTime
— For a vectorypiVectorVal

The buffer this routine uses for string values shall be different from the buffevphaget_str() shall use. The string
buffer used by vpi_get _value() is overwritten with each call. If the value is needed, it should be saved by the

application.

24-17
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

The s_vpi_value, s_vpi_vecval and s_vpi_strengthval structures usepli lyet value()are defined in vpi_user.h
and are listed in Figures 24-7, 24-8, and 24-9.

typedef struct t_vpi_value {
int format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,
Time,Vector,Strength,ObjType]Val*/
union {
char *str;
int scalar; /* vpi[0,1,X,Z] */
int integer;
double real;
struct t_vpi_time *time;
struct t_vpi_vecval *vector;
struct t_vpi_strengthval *strength;
char *misc;
} value;
}s_vpi_value, *p_vpi_value;

Figure 24-7—The s_vpi_value structure definition

typedef struct t_vpi_vecval {
int aval, bval; /* bit encoding: ab: 00=0, 10=1, 11=X, 01=Z */
} s_vpi_vecval, *p_vpi_vecval;

Figure 24-8—The s_vpi_vecval structure definition

typedef struct t_vpi_strengthval {

int logic; [* vpi[0,1,X,Z] */

int sO, s1; [* refer to strength coding in the LRM */
} s_vpi_strengthval, *p_vpi_strengthval;

Figure 24-9—The s_vpi_strengthval structure definition

For vectors, thg_vpi_vecvalfield shall point to an array of s_vpi_vecval structures. The size of this array shall be
determined by the size of the vector, whameay_size = ((vector_size-1)/32 + 1Yhe Isb of the vector shall be
represented by the Isb of the O-indexed element of s_vpi_vecval array. The 33rd bit of the vector shall be represented
by the Isb of the 1-indexed element of the array, and so on. The memory for the union meinhérs, vector

strength andmiscof the value union in the s_vpi_value structure shall be provided by the roginget value()

This memory shall only be valid until the next calltpi_get_value() [Note that the user must provide the memory

for these members when callingpi_put_value()]. When a value change callback occurs for a value type of

24-18
Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

vpiVectorVal, the system shall create the associated memory (an array of s_vpi_vecval structures) and free the
memory upon the return of the callback.

| Table 24-3—Return value field of the s_vpi_value structure union
Format Union member Return description

vpiBinStrVal str String of binary char(s1[0, x, 2
vpiOctStrVal str String of octal char(spE7, x, X, z, 4

X When all the bits are
X When some of the bits axe
z When all the bits are
Z When some of the bits are

vpiDecStrVval str String of decimal char(s) [0-9]

vpiHexStrVval str Strlng of hex char(spH, x, X, z, 4
When all the bits are

X When some of the bits axe

z When all the bits are

Z When some of the bits are

vpiScalarVal scalar vpil, vpio, vpiX, vpiZ, vpiH, vpiL
vpilntVal integer Integer value of the handle. Any bits x or z in the valpe
of the object are mapped to a 0
vpiRealVal real Value of the handle as a double
vpiStringVal str A string where each 8-bit group of the value of the
object is assumed to represent an ASCII character
vpiTimeVal time Integer value of the handle using two integers
vpiVectorVal vector aval/bvalrepresentation of the value of the object
vpiStrengthVal strength Value plus strength information of a scalar object gnly
vpiObjectVal — Return a value in the closest format of the object

NOTE—If the object has a real value, it shall be converted to an integer using the rounding defined by the Verilog
HDL before being returned in a format other thaiRealVal.

To get the ASCII values of UDP table entries (as explaine8idntion 8.1.6, Table 8-1), the vpi_vecvafield shall
point to an array of s_vpi_vecval structures. The size of this array shall be determined by the size of the table entry
(no. of symbols per table entry), whemeray_size = ((table_entry_size-1)/4 +.1fach symbol shall require a byte;
the ordering of the symbols within s_vpi_vecval shall be the most significant byabibffirst, then the least
significant byte ofbit, then the most significant byte bbit and then the least significant byteldsit. Each symbol
can be either one or two characters; when it is a single character, the second half of the byte shall be an ASCII “\0".

The miscfield in the s_vpi_value structure shall provide for alternative value types, which can be implementation
specific. If this field is utilized, one or more corresponding format types shall also be provided.

In the following example, the binary value of each net that is contained in a particular module and whose name begins
with a particular string is displayed. [This function makes use of the strcmp() facility normally declared in a string.h
C library.]

void display_certain_net_values(mod, target)
vpiHandle mod;

24-19
Standards Draft, subject to change.

| OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

char *target;

{
static s_vpi_value value_s = {vpiBinStrVal};
static p_vpi_value value_p = &value_s;
vpiHandle net, itr;

itr = vpi_iterate(vpiNet, mod);

while (net = vpi_scan(itr))

{
char *net_name = vpi_get_str(vpiName, net);
if (strcmp(target, net_name) == 0)

vpi_get_valugnet, value_p);
vpi_printf(“Value of net %s: %s\n”,
vpi_get_str(vpiFullName, net),value_p->value.str);

}

PTE-130 The following example illustrates the use of vpi_get value() to access UDP table entries. Two sample outputs from
this example are provided after the example.

/*
* hUDP must be a handle to a UDP definition
*/
static void dumpUDPTableEntries(vpiHandle hUDP)
{
vpiHandle hEntry, hEntrylter;
s_vpi_value value;
int numb;
int udpType;
int item;
int entryVal;
int *abltem;
int cnt, cnt2;
numb = vpi_get(vpiSize, hUDP);
udpType = vpi_get(vpiPrimType, hUDP);
if (udpType == vpiSeqPrim)
numb++; /* There is one more table entry for state */
numb++; /* There is a table entry for the output */
hEntrylter = vpi_iterate(vpiTableEntry, hUDP);
if (\hEntrylter)
return;
value.format = vpiVectorVal,
while(hEntry = vpi_scan(hEntrylter))
{
vpi_printf("\n");
/* Show the entry as a string */
value.format = vpiStringVal,
vpi_get_value(hEntry, &value);
vpi_printf("%s\n", value.value.str);
/* Decode the vector value format */
value.format = vpiVectorVal;
vpi_get_value(hEntry, &value);
abltem = (int *)value.value.vector;
for(cnt=((numb-1)/2+1);cnt>0;cnt--)

24-20
Standards Draft, subject to change.

THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

{

entryVal = *abltem;
abltem++;

/* Rip out 4 characters */
for (cnt2=0;cnt2<4;cnt2++)

{
item = entryVal&Oxff;
if (item)
vpi_printf(“%c”, item);
else
vpi_printf(*_");
entryVal = entryVal>>8;
}
}
}
vpi_printf(“\n”);

}

For a UDP table of:
1 0 :?2:1;
0 (01):?:-;
(10) 0 :0:1;

The output from the preceding example would be:

10:1
01 1
01:0
10 o0
00:1
00 1

For a UDP table entry of:

1 0 :?2:1;
0 (01):?:-;
(10) 0 :0:1;

The output from the preceding example would be:

10:?:1
011~
0(01):?:-
10.0_-_?
(10)0:0:1
_001_1.0

Standards Draft, subject to change.

ovi
(Draft 1)

24-21

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.15 vpi_get vlog_info()

vpi_get_vlog_info()
Synopsis: Retrieve information about Verilog simulation execution.
Syntax: vpi_get_vlog_info(vlog_info_p)
Type Description
Returns: bool true on success and false on failure
Type Name Description
Arguments: p_vpi_vlog_info vlog_info_p Pointer to a structure containing simulation informatigh

The VPI routinevpi_get_vlog_info()shall obtain the following information about Verilog product execution:

— The number of invocation optionarc)
— Invocation option valuesafgv)
— Product and version strings

The information shall be contained in an s_vpi_vlog_info structure. The routine shall return true on success and false
on failure.

The s_vpi_vlog_info structure used byi_get_vlog_info()is defined in vpi_user.h and is listed in Figure 24-10.

typedef struct t_vpi_vlog_info {

int argc;

char **argv;

char *product;

char *version;
}s_vpi_vlog_info, *p_vpi_vlog_info;

Figure 24-10—The s_vpi_vlog_info structure definition

24-22
Standards Draft, subject to change.

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.16 vpi_get real()

vpi_get_real()

Synopsis: Fetch a real property value associated with an objact..
Syntax: vpi_get_real(prop,obj)

Type Description
Returns: double value of a real property

Type Name Description
Arguments: int prop An integer constant representing the property of an oljject

for which to obtain a value
vpiHandle obj Handle to an object

The VPI routinevpi_get_real() shall be used to access node voltages, branch currents and other real valued
properties from design objects.

This function is available to analog tasks and functions only.

24-23
Standards Draft, subject to change.

| OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.17 vpi_handle()

vpi_handle()

Synopsis: Obtain a handle to an object with a one-to-one relationship.
Syntax: vpi_handle(type, ref)

Type Description
Returns: vpiHandle Handle to an object

Type Name Description
Arguments: int type An integer constant representing the type of object for|

which to obtain a handle
vpiHandle ref Handle to a reference object

Related Use vpi_iterate() and vpi_scan() to obtain handles to objects with a one-to-many relationship
routines: Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship

The VPI routinevpi_handle() shall return the object of typé&pe associated with objeatef. The one-to-one
PTE-144| relationships that are traversed with this routine are indicated as single arrows in the data model diagrams.

The following example application displays each primitive that an input net drives.

void display_driven_primitives(net)

vpiHandle net;

vpiHandle load, prim, itr;
vpi_printf(“Net %s drives terminals of the primitives: \n”,

vpi_get_str(vpiFullName, net));

itr = vpi_iterate(vpiLoad, net);

while (load = vpi_scan(itr))

switch(vpi_get(vpiType, load))
{

case vpiGate:
case vpiSwitch:
case vpiUudp:

{
if (litr)
return;
}
}
}

24-24

prim =vpi_handle(vpiPrimitive, load);
vpi_printf(“\t%s\n”, vpi_get_str(vpiFullName, prim));

Standards Draft, subject to change.

I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

24.18 vpi_handle_by index()

ovi
(Draft 1)

vpi_handle_by_index()

Synopsis: Get a handle to an object using its index number within a parent object.
Syntax: vpi_handle_by_index(obj, index)

Type Description
Returns: vpiHandle Handle to an object

Type Name Description
Arguments: vpiHandle obj Handle to an object

int index Index number of the object for which to obtain a handIFx

The VPI routinevpi_handle_by_index()shall return a handle to an object based on the index number of the object
within a parent object. This function can be used to access all objects that can access an expressipinaerg
Argumentobj shall represent the parent of the indexed object. For example, to access a abj-wibuld be the
associated net, while for a memory wastlj would be the associated memory.

Standards Draft, subject to change.

24-25

| OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.19 vpi_handle_by name()

vpi_handle_by name()

Synopsis: Get a handle to an object with a specific name.
Syntax: vpi_handle_by_ name(name, scope)

Type Description
Returns: vpiHandle Handle to an object

Type Name Description
Arguments: char * name A character string or pointer to a string containing the

name of an object
vpiHandle scope Handle to a Verilog HDL scope

The VPI routinevpi_handle_by name(shall return a handle to an object with a specific name. This function can be
applied to all objects with &ullnameproperty. Thenamecan be hierarchical or simple.s$topeis NULL, thenname

shall be searched for from the top level of hierarchy. Otherwiseeshall be searched for froscopeusing the
scope search rules defined by the Verilog HDL.

24-26
Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.20 vpi_handle_multi()

vpi_handle_multi()

Synopsis: Obtain a handle to intermodule paths with a many-to-one relationship.
Syntax: vpi_handle_multi(type, refl, ref2, ...)

Type Description
Returns: vpiHandle Handle to an object

Type Name Description
Arguments: int type An integer constant representing the type of object for|

which to obtain a handle
vpiHandle refl, ref2, ... Handles to two or more reference objects

Related Use vpi_iterate() and vpi_scan() to obtain handles to objects with a one-to-many relationship
routines: Use vpi_handle() to obtain handles to objects with a one-to-one relationship

The VPI routinevpi_handle_multi() shall return a handle to objects of typgilnterModPath associated with a list
of output portandinput pott reference objects. The ports shall be of the same size and can be at different levels of the
hierarchy. This routine performamany-to-oneperation instead of the usual one-to-one or one-to-many.

24-27
Standards Draft, subject to change.

OVI (Draft 1)

Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.21 vpi_iterate()

vpi_iterate()

Synopsis: Obtain an iterator handle to objects with a one-to-many relationship.
Syntax: vpi_iterate(type, ref)

Type Description
Returns: vpiHandle Handle to an iterator for an object

Type Name Description
Arguments: int type An integer constant representing the type of object for|

which to obtain iterator handles
vpiHandle ref Handle to a reference object
Related Use vpi_scan() to traverse the HDL hierarchy using the iterator handle returned from vpi_iterate()
routines: Use vpi_handle() to obtain handles to object with a one-to-one relationship
Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship

The VPI routinevpi_iterate() shall be used to traverse one-to-many relationships, which are indicated as double
arrows in the data model diagrams. T _iterate() routine shall return a handle to an iterator, whose type shall be

vpilterator , which can used bypi_scan()to traverse all objects of typgypeassociated with objecef. To get the

reference object from the iterator object uge_handle(vpiUse, iterator_handle) If there are no objects of type

typeassociated with the reference hamdfethen thevpi_iterate() routine shall return NULL.

The following example application usepi_iterate() and vpi_scan()to display each net (including the size for

vectors) declared in the module. The example assumes it shall be passed a valid module handle.

void display_nets(mod)

vpiHandle mod;

{

24-28

vpiHandle net;
vpiHandle itr;

vpi_printf(“Nets declared in module %s\n”,

vpi_get_str(vpiFullName, mod));

itr = vpi_iterate(vpiNet, mod);
while (net =vpi_scarfitr))

{

vpi_printf("\t%s”, vpi_get_str(vpiName, net));
if (vpi_get(vpiVector, net))

vpi_printf(* of size %d\n”, vpi_get(vpiSize, net));

else vpi_printf(“\n”);

Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.22 vpi_mcd_close()

vpi_mcd_close()

Synopsis: Close one or more files opened by vpi_mcd_open().
Syntax: vpi_mcd_close(mcd)

Type Description
Returns: unsigned int 0 if successful, the mcd of unclosed channels if unsuccessful

Type Name Description
Arguments: unsigned int mcd A multichannel descriptor representing the files to clgse
Related Use vpi_mcd_open() to open a file
routines: Use vpi_mcd_printf() to write to an opened file

Use vpi_mcd_name() to get the name of a file represented by a channel descriptor

The VPI routinevpi_mcd_close()shall close the file(s) specified by a multichannel descriptod Several channels
can be closed simultaneously, since channels are represented by discrete bits in thariote@r success this
routine returns a 0; on error it returns thedvalue of the unclosed channels.

PTE-096| The following descriptors are predefined, and cannot be closed using vpi_mcd_close():

— descriptor 1 istdout
— descriptor 2 istderr
— descriptor 3 is the current log file

24-29
Standards Draft, subject to change.

| OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.23 vpi_mcd_name()

vpi_mcd_name()

Synopsis: Get the name of a file represented by a channel descriptor.
Syntax: vpi_mcd_name(cd)

Type Description
Returns: char * Pointer to a character string containing the name of a file

Type Name Description
Arguments: unsigned int cd A single-channel descriptor representing a file
Related Use vpi_mcd_open() to open a file
routines: Use vpi_mcd_close() to close files

Use vpi_mcd_printf() to write to an opened file

The VPI routinevpi_mcd_name()shall return the name of a file represented by a single-channel desctight@m
error, the routine shall return NULL. This routine shall overwrite the returned value on subsequent calls. If the

PTF-097| application needs to retain the string, it should copy it.

24-30
Standards Draft, subject to change.

THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE

24.24 vpi_mcd_open()

ovi

(Draft 1)

vpi_mcd_open()
Synopsis: Open a file for writing.
Syntax: vpi_mcd_open(file)
Type Description
Returns: unsigned int A multichannel descriptor representing the file that was opened
Type Name Description
Arguments: char * file A character string or pointer to a string containing the fi
name to be opened
Related Use vpi_mcd_close() to close a file
routines: Use vpi_mcd_printf() to write to an opened file
Use vpi_mcd_name() to get the name of a file represented by a channel descriptor

e

The VPI routinevpi_mcd_open()shall open a file for writing and return a corresponding multichannel descriptor
number (hcd. The following channel descriptors are predefined and shall be automatically opened by the system:

— Descriptor 1 istdout
— Descriptor 2 istderr
— Descriptor 3 is the current log file

Thevpi_mcd_open()routine shall return 8 on error. If the file is already openedhi_mcd_open()shall return the
descriptor number.

Standards Draft, subject to change.

24-31

OVI (Draft 1)

Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.25 vpi_mcd_printf()

vpi_mcd_printf()
Synopsis: Write to one or more files opened with vpi_mcd_open().
PTFE-098 Syntax: vpi_mcd_printf(mcd, format, ...)

Type Description
Returns: int The number of characters written

Type Name Description
Arguments: unsigned int mcd A multichannel descriptor representing the files to whi

write

char * format A format string using the C fprintf() format
Related Use vpi_mcd_open() to open a file
routines: Use vpi_mcd_close() to close a file

Use vpi_mcd_name() to get the name of a file represented by a channel descriptor

th to

The VPI routinevpi_mcd_printf() shall write to one or more channels (up to 32) determined byrtte An mcdof

1 (bit O set) corresponds to Channel 1mad of 2 (bit 1 set) corresponds to Channel 2mad of 4 (bit 2 set)
corresponds to Channel 3, and so on. Channelstdsut channel 2 isstderr, and channel 3 is the current log file.
Several channels can be written to simultaneously, since channels are represented by discrete bits in timedhteger
The format strings shall use the same format as the C fprintf() routine.The routine shall return the number of
characters printed, or EOF if an error occurred.

24-32

Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.26 vpi_printf()

vpi_printf()
Synopsis: Write to stdout and the current product log file.
|F.100| Syntax: vpi_printf(format, ...)

Type Description
Returns: int The number of characters written

Type Name Description
Arguments: char * format A format string using the C printf() format
Related Use vpi_mcd_printf() to write to an opened file
routines:

PTE-100| The VPIroutinevpi_printf() shall write to bothstdoutand the current product log file. The format string shall use the
same format as the C printf() routine. The routine shall return the number of characters printed, or EOF if an error

occurred.

24-33
Standards Draft, subject to change.

| OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.27 vpi_put_delays()

vpi_put_delays()

Synopsis: Set the delays or timing limits of an object.
Syntax: vpi_put_delays(obj, delay_p)

Type Description
Returns: void

Type Name Description
Arguments: vpiHandle obj Handle to an object

p_vpi_delay delay_p Pointer to a structure containing delay information

Related Use vpi_get_delays() to retrieve delays or timing limits of an object
routines:

The VPI routinevpi_put_delays() shall set the delays or timing limits of an object as indicated indéky p
structure. The same ordering of delays shall be used as describedvipi thet delays()function. If only the delay
changes, and not the pulse limits, the pulse limits shall retain the values they had before the delays where altered.

The s_vpi_delay and s_vpi_time structures used by lpihget delays()and vpi_put_delays() are defined in
vpi_user.h and are listed in Figures 24-11 and 24-12.

typedef struct t_vpi_delay {

structt_vpi_time *da; [* ptr to user allocated array of delay
values */

int no_of delays; /* number of delays */
int time_type; [* [vpiScaledRealTime, vpiSimTime] */
bool mtm_flag; [* true for mtm */
bool append_flag; /* true for append, false for replace */
bool pulsere_flag; [* true for pulsere values */

} s_vpi_delay, *p_vpi_delay;

Figure 24-11—The s_vpi_delay structure definition

typedef struct t_vpi_time

{
int type; [* [vpiScaledRealTime, vpiSimTime] */
unsigned int high, low; /* for vpiSimTime */
double real; [* for vpiScaledRealTime */

s_vpi_time, *p_vpi_time;
p p_vp

Figure 24-12—The s_vpi_time structure definition

Thedafield of the s_vpi_delay structure shall be a user-allocated array of s_vpi_time structures. This array shall store
PTE-046| the delay values to be written tagi_put_delays() The number of elements in this array shall be determined by:

— The number of delays to be retrieved

24-34
Standards Draft, subject to change.

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

— Themtm_flag setting
— Thepulsere_flagsetting

The number of delays to be retrieved shall be set imiheof delaydield of the s_vpi_delay structure. Legal values
for the number of delays shall be determined by the type of object.

— For primitive objects, thao_of delaywvalue shall be 2 or 3.

— For path delay objects, tm®_of delaysalue shall be 1, 2, 3, 6, or 12.

— For timing check objects, theo_of delaysvalue shall match the number of limits existing in the timing
check.

— For intermodule path objects, the_of delayvalue shall be 2 or 3.

The user allocated s_vpi_delay array shall contain delays in the same order in which they occur in the Verilog HDL
description. The number of elements for each delay shall be determined by thenftagag andpulsere_flag as
shown in Table 24-2.

Table 24-4—Size of the s_vpi_delay->da array

Number of s_vpi_time array elements Order in which delay elements

Flag values required for s_vpi_delay->da shall be filled

mtm_flag = false 1st delay: da[0] -> 1st delay
pulsere_flag= false no_of_delays 2nd delay: da[1] -> 2nd delay

mtm_flag = true 1st delay: da[0] -> min delay
pulsere_flag= false 3 *no_of_delays da[1] -> typ delay
da[2] -> max delay
2nd delay: ...

mtm_flag = false 1st delay: da[0] -> delay

pulsere_flag= true 3 *no_of_delays da[1] -> reject limit
da[2] -> error limit

2nd delay element: ...

mtm_flag = true 1st delay: da[0] -> min delay

pulsere_flag= true 9 *no_of_delays da[1] -> typ delay
da[2] -> max delay
da[3] -> min reject
da[4] -> typ reject
da[5] -> max reject
da[6] -> min error
da[7] -> typ error
da[8] -> max error

2nd delay: ...

The following example application accepts a module path handle, rise and fall delays, and replaces the delays of the
indicated path.

void set_path_rise_fall_delays(path, rise, fall)

vpiHandle path;

double rise, fall;

{
static s_vpi_time path_da[2];
static s_vpi_delay delay_s = {NULL, 2, vpiScaledRealTime};
static p_vpi_delay delay_p = &delay_s;

delay_s.da = &path_da;

24-35
Standards Draft, subject to change.

| OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

path_da[0].real = rise;
path_da[1].real = fall;

vpi_put_delayqpath, delay_p);

24-36
Standards Draft, subject to change.

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.28 vpi_put_deriv()

vpi_put_deriv()

Synopsis: Set the value of a partial derivative of one argument or return value with respect to another.
Syntax: vpi_put_deriv(var,wrt,value)

Type Description
Returns:

Type Name Description
Arguments: int var

int wrt
double value

The VPI routinevpi_put_deriv() shall be used to add a value to a partial derivative which has been declared using
vpi_declare_deriv() in the compile_tf call back. This function should be called from the call_tf callback only, and
may be called only to contribute to partial derivatives which have been previously declared. Calls for derivatives
which have not been declared will be ignored. Tpé put_deriv() should be used to assign a value to all derivatives
which have been declared.

This function is available to analog tasks and functions only.

24-37
Standards Draft, subject to change.

OVI (Draft 1)

Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.29 vpi_put_value()

vpi_put_value()
Synopsis: Set a value on an object.
Syntax: vpi_put_value(obj, value_p, time_p, flags)
Type Description
Returns: vpiHandle Handle to the scheduled event caused by vpi_put_value()
Type Name Description
Arguments: vpiHandle obj Handle to an object
p_vpi_value value_p Pointer to a structure with value information
p_vpi_time time_p Pointer to a structure with delay information
int flags Integer constants that set the delay mode
Related Use vpi_get_value() to retrieve the value of an expression
routines:

The VPI routinevpi_put_value() shall set simulation logic values on an object. The value to be set shall be stored in

an s_vpi_value structure that has been allocated. The delay time before the value is set shall be stored in an
s_vpi_time structure that has been allocated. The routine can be applied to nets, regs, variables, memory words,

system function calls, sequential UDPs, and schedule eventdlafisargument shall be used to direct the routine to
use one of the following delay modes:

vpilnertialDel

ay

vpiTransportDelay

vpiPureTransportDelay

vpiNoDelay

vpiForceFlag

vpiReleaseFlag

vpiCancelEvent

All scheduled events on the object shall be removed before this event is scheduled.

All events on the object scheduled for times later than this event shall be removed
(modified transport delay).

No events on the object shall be removed (transport delay).

The object shall be set to the passed value with no delay. Argutingatpshall be
ignored and can be set to NULL.

The object shall be forced to the passed value with no delay (same as the Verilog
HDL proceduraforce). Argumenttime_pshall be ignored and can be set to NULL.

The object shall be released from a forced value (same as the Verilog HDL
proceduralreleasg. Argumenttime_pshall be ignored and can be set to NULL.
Thevalue_pshall contain the current value of the object.

A previously scheduled event shall be cancelled. The object passed to
vpi_put_value() shall be a handle to an object of typéSchedEvent

If the flags argument also has the bit masipiReturnEvent, vpi_put_value() shall return a handle of type
vpiSchedEventto the newly scheduled event, provided there is some form of a delay and an event is scheduled. If the
bit mask is not used, or if no delay is used, or if an event is not scheduled, the return value shall be NULL.

The handle to the event can be cancelled by callipigput_value() with the flag set tavpiCancelEvent It shall not

be an error to cancel an event that has already occurred. The scheduled event can be tested ‘i cgéifigvith

the flagvpiScheduled If an event is cancelled, it shall simply be removed from the event queue. Any effects that
were caused by scheduling the event shall remain in effect (e.g., events that where cancelled due to inertial delay).

24-38

Standards Draft, subject to change.

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

Calling vpi_free_object()on the handle shall free the handle but shall not effect the event.

Sequential UDPs shall be set to the indicated value with no delay regardless of any delay on the primitive instance.

NOTE—vpi_put_value() shall only return a function value in a calltf application, when the call to the function is active. The action
of vpi_put_value() to a function shall be ignored when the function is not active.

The s_vpi_value and s_vpi_time structures usedvply put value() are defined in vpi_user.h and are listed in
Figures 24-13 and 24-14.

typedef struct t_vpi_value {
int format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar, Int,Real,String,
Time,Vector,Strength,ObjType]Val*/
union {
char *str;
int scalar; /* vpi[0,1,X,Z] */
int integer;
double real;
struct t_vpi_time *time;
struct t_vpi_vecval *vector;
struct t_vpi_strengthval *strength;
char *misc;
} value;
}s_vpi_value, *p_vpi_value;

Figure 24-13—The s_vpi_value structure definition

typedef struct t_vpi_time {

int type; [* for vpiScaledRealTime, vpiSimTime */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;

Figure 24-14—The s_vpi_time structure definition

ForvpiScaledRealTime the indicated time shall be in the timescale associated with the object.

24-39
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.30 vpi_register_chb()

vpi_register_ch()

Synopsis: Register simulation-related callbacks.
Syntax: vpi_register_cb(cb_data_p)

Type Description
Returns: vpiHandle Handle to the callback object

Type Name Description
Arguments: p_cb_data cb_data_p Pointer to a structure with data about when callbackis

should occur and the data to be passed

Related Use vpi_register_systf() to register callbacks for user-defined system tasks and functions
routines: Use vpi_remove_ch() to remove callbacks registered with vpi_register_ch()

The VPI routinevpi_register_cb() is used for registration of simulation-related callbacks to a user-provided
application for a variety of reasons during a simulation. The reasons for which a callback can occur are divided into
three categories:

Simulation event
Simulation time
Simulation action or feature

How callbacks are registered for each of these categories is explained in the following paragraphs.

Thecb_data_pargument shall point to a s_cb_data structure, which is defined in vpi_user.h and given in Figure 24-
15.

typedef structt_cb_data {
int reason;
int (*cb_rtn)();
vpiHandle obj;

p_vpi_time time;
p_vpi_value value;
int index;

char *user_data;

/* index of memory word or var select which changed */

[* structure defined in vpi_user.h */
I* structure defined in vpi_user.h */

[* user data to be passed to callback function */

}s_cb_data, *p_cb_data;

Figure 24-15—The s_cb_data structure definition

For all callbacks, thereasonfield of the s_cb_data structure shall be set to a predefined constant, such as
cbValueChange cbAtStartOfSimTime, cbEndOfCompile, etc. The reason constant shall determine when the user
application shall be called back. Refer to the vpi_user.h file listingimex C for alist of all callback reason
constants.

Thecb_rtnfield of the s_cb_data structure shall be set to the application routine name, which shall be invoked when
the simulator executes the callback. The use of the remaining fields are detailed in the following subclauses.

24-40
Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.30.1 Simulation-event-related callbacks

The vpi_register_cb() callback mechanism can be registered for callbacks to occur for simulation events, such as
value changes on an expression or terminal, or the execution of a behavioral statement. Véhedate p->reason
field is set to one of the following, the callback shall occur as described below:

cbValueChange After value change on an expression or terminal
chStmt Before execution of a behavioral statement
cbForce/cbRelease After a force or release has occurred
cbAssign/cbDeassign After a procedural assign or deassign statement has been executed
cbDisable After a named block or task containing a system task or function has been disabled

The following fields shall need to be initialized before passing the s_cb_data struepiredgister_cb(}

cb_data_p->obj This field shall be assigned a handle to an expression, terminal, or statement for
which the callback shall occur. For force and release callbacks, if this is set to
NULL, every force and release shall generate a callback.

cb_data_p->time->type This field shall be set to eithepiScaledRealTimeor vpiSimTime, depending on
what time information the user application requires during the callback. If
simulation time information is not needed during the callback, this field can be set
to vpiSuppressTime

cb_data_p->value->format This field shall be set to one of the value formats indicated in Table 24-5. If value
information is not needed during the callback, this field can be set to
vpiSuppressVal For cbStmt callbacks, value information is not passed to the
callback routine, so this field shall be ignored.

Table 24-5—Value format field of cb_data_p->value->format

Format Registers a callback to return
vpiBinStrVal String of binary char(s)], 0, x, 2
vpiOctStrVal String of octal char(sOF7, x, X, z, 4
vpiDecStrVal String of decimal char(s) [0-9]
vpiHexStrVal String of hex char(s)oH, x, X, z, 4
vpiScalarVal vpil, vpi0, vpiX, vpiZ, vpiH, vpiL
vpilntVal Integer value of the handle
vpiRealVal Value of the handle as a double
vpiStringVal An ASCII string
vpiTimeVal Integer value of the handle using two integers
vpiVectorVal aval/bvalrepresentation of the value of the object
vpiStrengthVal Value plus strength information of a scalar object only
vpiObjectVal Return a value in the closest format of the object

When a simulation event callback occurs, the user application shall be passed a single argument, which is a pointer to
an s_cb_data structure [this is not a pointer to the same structure that was pagsecetgister_cb()]. Thetimeand

24-41
Standards Draft, subject to change.

| OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

valueinformation shall be set as directed by the titypeandvalueformat fields in the call tepi_register_cb() The
user_datéfield shall be equivalent to theser_datafield passed tapi_register_cb() The user application can use

the information in the passed structure and information retrieved from other VPI interface routines to perform the
desired callback processing.

For acbValueChangecallback, if theobjis a memory word or a variable array, thaluein the s_cb_data structure
shall be the value of the memory word or variable select that changed valuadexéield shall contain the index of
the memory word or variable select that changed value.

For cbForce cbReleasecbAssignandcbDeassigrcallbacks, the object returned in thbj field shall be a handle to
PTE-164| the force, release, assign or deassign statement. v@he field shall contain the resultant value of the LHS
expression. In the case of a releasey#ieefield shall contain the value after the release has occurred.

The following example shows an implementation of a simple monitor functionality for scalar nets, using a
simulation-event-related callback.

setup_monitor(net)

vpiHandle net;

{
static s_vpi_time time_s = {vpiScaledRealTime};
static s_vpi_value value_s = {vpiBinStrVal};
statics_cb_datachb data s =

{cbValueChange, my_monitor, NULL, &time_s, &value_s};

char *net_name = vpi_get_str(vpiFullName, net);
cb_data_s.obj = net;
cb_data_s.user_data = malloc(strlen(net_name)+1);
strcpy(cb_data_s.user_data, net_name);
vpi_register_ch(&cb_data_s);

}

my_monitor(cb_data_p)
p_cb_data cb_data_p; {
vpi_printf(“%d %d: %s = %s\n”,
cb_data_p->time->high, cb_data_p->time->low,
cb_data_p->user_data,
cb_data_p->value->value.str);

}

24.30.2 Simulation-time-related callbacks

Thevpi_register_cb()can register callbacks to occur for simulation time reasons, include callbacks at the beginning
or end of the execution of a particular time queue. The following time-related callback reasons are defined:

cbAtStartOfSimTime Callback shall occur before execution of events in a specified time queue. A
callback can be set for any time, even if no event is present.

cbReadWriteSynch Callback shall occur after execution of events for a specified time.

cbReadOnlySynch Same ascbReadWriteSynch except that writing values or scheduling events
before the next scheduled event is not allowed.

cbNextSimTime Callback shall occur before execution of events in the next event queue.

cbAfterDelay Callback shall occur after a specified amount of time, before execution of events in
a specified time queue. A callback can be set for anytime, even if no event is
present.

The following fields shall need to be set before passing the s_cb_data struepiredgister cb()

24-42
Standards Draft, subject to change.

PTF-104

PTF-152

should this
be “VPI
routine
call"?

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

cb_data_p->time->type This field shall be set to eithepiScaledRealTimeor vpiSimTime, depending on
what time information the user application requires during the callback.

cb_data_p->[time->low,time->high,time->real]
These fields shall contain the requested time of the callback or the delay before the
callback.

Thevaluefields are ignored for all reasons with simulation-time-related callbacks.

When thecb_data_p->time->typés set tovpiScaledRealTime thecb_data_p->obfield shall be used as the object
for determining the time scaling.

For reasortbNextSimTime, the time structure is ignored.

When a simulation-time-related callback occurs, the user callback application shall be passed a single argument,
which is a pointer to an s_cb_data structure [this is not a pointer to the same structure that was passed to
vpi_register_cb()]. The time structure shall contain the current simulation time. Tuser_datafield shall be
equivalent to theiser_datdfield passed tupi_register_cb().

The callback application can use the information in the passed structure and information retrieved from other
interface routines to perform the desired callback processing.

24.30.3 Simulator action and feature related callbacks

The vpi_register_cb() can register callbacks to occur for simulator action reasons or simulator feature reasons.
Simulator action reasorare callbacks such as the end of compilation or end of simulgionulator feature reasons

are software-product-specific features, such as restarting from a saved simulation state or entering an interactive
mode. Actions are differentiated from features in that actions shall occur in all VPI-compliant products, whereas
features might not exist in all VPI-compliant products.

The following action-related callbacks shall be defined:

cbEndOfCompile End of simulation data structure compilation or build
cbStartOfSimulation Start of simulation (beginning of time 0 simulation cycle)
cbEndOfSimulation End of simulation (e.g., $finish system task executed)
cbError Simulation run-time error occurred

cbPLIError Simulation run-time error occurred in a PLI function calll
cbTchkViolation Timing check error occurred

Examples of possible feature related callbacks are

cbStartOfSave Simulation save state command invoked

cbEndOfSave Simulation save state command completed

cbStartOfRestart Simulation restart from saved state command invoked

cbEndOfRestart Simulation restart command completed

cbEnterinteractive Simulation entering interactive debug mode (e.g., $stop system task executed)
cbEXxitInteractive Simulation exiting interactive mode

cbinteractiveScopeChange Simulation command to change interactive scope executed

cbUnresolvedSystf Unknown user-defined system task or function encountered

The only fields in the s_cb_data structure that shall need to be setup for simulation action/feature callbacks are the
reason cb_rtn anduser_datdif desired) fields.

24-43
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

When a simulation action/feature callback occurs, the user routine shall be passed a pointer to an s_cb_data structure.
The reasonfield shall contain the reason for the callback. Ebi chkViolation callbacks, theobj field shall be a

handle to the timing check. FocbinteractiveScopeChange obj shall be a handle to the new scope. For
cbUnresolvedSystfuser_datashall point to the name of the unresolved task or function. OloEaror callback, the
routinevpi_chk_error() can be called to retrieve error information.

The following example shows a callback application that reports cpu usage at the end of a simulation. If the user
routine setup_report_cpu() is placed in the vlog_startup_routines list, it shall be called just after the simulator is
invoked.

static int initial_cputime_g;
void report_cpu()

int total = get_current_cputime() - initial_cputime_g;
vpi_printf(“Simulation complete. CPU time used: %d\n”, total);

}

void setup_report_cpu()

{
static s_cb_data cb_data_s = {cbEndOfSimulation, report_cpu};
initial_cputime_g = get_current_cputime();
vpi_register_ch(&cb_data_s);

}

24-44
Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.31 vpi_register_ach()

| vpi_register_ach()
| Synopsis: Register analog simulation-related callbacks.
| Syntax: vpi_register_acb(acb_data_p)
Type Description
Returns: vpiHandle Handle to the callback object
Type Name Description
| Arguments: p_acb_data acb_data_p Pointer to a structure with data about when callbackis
should occur and the data to be passed
Related Use vpi_register_systf() to register callbacks for user-defined system tasks and functions
| routines: Use vpi_remove_ach() to remove callbacks registered with vpi_register_acb()

The VPI routinevpi_register_ach()is used for registration of analog simulation-related callbacks to a user-provided
application for a variety of reasons during a simulation. The reasons for which a callback can occur are divided into
three categories:

— Threshold crossing of a potential or flow
— Simulation time
— Simulation action or feature

How callbacks are registered for each of these categories is explained in the following paragraphs.

Theacb_data_pmargument shall pointto a s_acb_data structure, which is defined in vpi_user.h and given in Figure 24-

15.
typedef struct t_acb_data {
int reason; /* acbAbsTime, acbElapsedTime, acbThreshold, ... */
int (*acb_rtn)(); /* function to be called */
vpiHandle obj; /* handle of branch, node, analog variable */
int property; [*e.g. flow or potential, if obj is a branch */
double time; /* absolute or elapsed simulation time */
double value; * threshold value */
double delta; [* time tolerance */
double epsilon; [* value tolerance */
int sign; /* crossing direction 1,0,-1 */
char *user_data; [* user data to be passed to callback function */
}s_acb_data, *p_ach_data;

Figure 24-16—The s_acb_data structure definition

For all callbacks, thereasonfield of the s_cb_data structure shall be set to a predefined constant, such as
cbThreshold, cbAtStartOfSimTime, cbEndOfCompile, etc. The reason constant shall determine when the user
application shall be called back. Refer to the vpi_user.h file listindimex C for alist of all callback reason
constants. Some reasons are not valid for analog simulation related callbacks.

24-45
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

The acb_rtnfield of the s_acb_data structure shall be set to the application routine name, which shall be invoked
when the simulator executes the callback. The use of the remaining fields are detailed in the following subclauses.

24.31.1 Simulation-event-related callbacks

The vpi_register_ach() callback mechanism can be registered for callbacks to occur for simulation events, such as
threshold crossing of a flow or potential , or acceptance of the initial or final analog solution. Whessbthaata_p-
>reasonfield is set to one of the following, the callback shall occur as described below:

acblnitialStep Upon acceptance of the first analog solution
acbFinalStep Upon acceptance of the last analog solution
acbAbsTime Upon acceptance of the analog solution for the given time (this callback will force a

solution at that time)

acbElapsedTime Upon acceptance of the solution advanced from the current solution by the given
interval (this callback will force a solution at that time)

acbThreshold Upon threshold crossing of a variable, flow, or potential
The following field shall need to be initialized before passing the s_cb_data struciprerégister_cb(}

acb_data_p->obj This field shall be assigned a handle to node, branch, or analog variable.
acb_data_ p->property In the case of a branch of node this field shall be assigp#elow or vpiPotential.

acb_data p->user _data This field shall be assigned a handle to memory which may be used by the users
application..

For a acbAbsTime or acbElapsedTimecallback:

acb_data_p->time This field shall be assigned the value of absolute or elapsed time when the callback
should occur.

For a acbThresholdcallback:

acb_data_p->value This field shall be assigned the threshold value whose crossing will cause the
callback.

acb_data_p->delta The callback will occur within this tolerence of the actual crossing time.

acb_data_p->epsilon The callback will occur within this tolerence of the actual crossing value.

acb_data_p->sign 1 = ascending crossing only, -1 = descending crossing only, 0 = either direction.

When a simulation event callback occurs, the user application shall be passed a single argument, which is a pointer to
an s_acb_data structure [this is not a pointer to the same structure that was pagse@tister _cb(). Thetimeand
valueinformation shall be set to the values for the current analog solutionuséie datdield shall be equivalent to
theuser_datdield passed topi_register_cb() The user application can use the information in the passed structure
and information retrieved from other VPI interface routines to perform the desired callback processing.

24.31.2 SSimulator action and feature related callbacks

The vpi_register_cb() can register callbacks to occur for simulator action reasons or simulator feature reasons.
Simulator action reasorare callbacks such as the end of compilation or end of simuldionulator feature reasons

are software-product-specific features, such as restarting from a saved simulation state or entering an interactive
mode. Actions are differentiated from features in that actions shall occur in all VPI-compliant products, whereas
features might not exist in all VPI-compliant products.

The following action-related callbacks shall be defined:

24-46
Standards Draft, subject to change.

PTF-192

should thig

be “VPI

routing
call"?

ovi

THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)
cbEndOfCompile End of simulation data structure compilation or build
cbStartOfSimulation Start of simulation (beginning of time 0 simulation cycle)
cbENndOfSimulation End of simulation (e.g., $finish system task executed)
cbError Simulation run-time error occurred
cbPLIError Simulation run-time error occurred in a PLI function call
cbFailConverge Simulation terminated because of failure to converge

Examples of possible feature related callbacks are

cbStartOfSave Simulation save state command invoked

cbEndOfSave Simulation save state command completed

cbStartOfRestart Simulation restart from saved state command invoked

cbEndOfRestart Simulation restart command completed

cbEnterinteractive Simulation entering interactive debug mode (e.g., $stop system task executed)
cbEXxitInteractive Simulation exiting interactive mode

cbinteractiveScopeChange Simulation command to change interactive scope executed

cbUnresolvedSystf Unknown user-defined system task or function encountered

The only fields in the s_scb_data structure that shall need to be setup for simulation action/feature callbacks are the
reason cb_rtn, anduser_dat&(if desired) fields.

When a simulation action/feature callback occurs, the user routine shall be passed a pointer to an s_acb_data
structure. Theeasonfield shall contain the reason for the callback. EbmteractiveScopeChangeobj shall be a

handle to the new scope. FobUnresolvedSystf user_datashall point to the name of the unresolved task or
function. On abError callback, the routinepi_chk_error() can be called to retrieve error information.

24-47
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.32 vpi_register_systf()

vpi_register_systf()

Synopsis: Register user-defined system task/function-related callbacks.
Syntax: vpi_register_systf(systf_data_p)
Type Description
Returns: vpiHandle Handle to the callback object
Type Name Description
Arguments: p_vpi_systf_data systf_data_p Pointer to a structure with data about when callbacks
should occur and the data to be passed
Related Use vpi_register_cb() to register callbacks for simulation-related events
routines:

The VPI routinevpi_register_systf() shall register callbacks for user-defined system tasks or functions. Callbacks
can be registered to occur when a user-defined system task or function is encountered during compilation or
execution of Verilog HDL source code. Tasks or functions may be registered with either the analog or digital domain.
The domain with which the task or function is registered will determine the context or contexts from which the task or
function may be invoked and how and when the call backs associated with the function will be called. The task or
function name must be unique in the domain in which it is registered. That is, the same name may be shared by two
sets of callbacks, provided that one set is registered in the digital domain and the other is registered in the analog.

The systf_data_pargument shall point to a s_vpi_systf data structure, which is defined in vpi_user.h and listed in
Figure 24-17.

typedef struct t_vpi_systf_data {

int type; [* vpiSys[Task, TaskA,Function,FunctionA] */
int sysfunctype; /* vpi[IntFunc,RealFunc, TimeFunc,SizedFunc] */
char *tfname; [* first character must be “$” */

int (*calltf)();
int (*compiletf)();
int (*sizetf)(); [* for vpiSizedFunc system functions only */
char *user_data;
} s_vpi_systf_data, *p_vpi_systf data;

Figure 24-17—The s_vpi_systf _data structure definition

24.32.1 System task and function callbacks

User-defined Verilog system tasks and functions that use VPI routines can be registeredi wilgister_systf()
The following system task/function-related callbacks are defined.

The typefield of the s_vpi_systf data structure shall register the user application to be a system task or a system
function. Thetype field value shall be an integer constant \gfiSysTask ,vpiSysTaskA vpiSysFunction or
vpiSysFunctionA. vpiSysTaskwill register a task with the digital domaimpiSysTaskAwill register a task with the

analog domainvpiSysFunction will register a function with the digital domainpiSysFunctionA will register a
function with the analog domain.

24-48
Standards Draft, subject to change.

PTF-088

PTF-107

PTF-191

ovi
THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

The sysfunctypdield of the s_vpi_systf_data structure shall define the type of value that a system function shall
return. The sysfunctypefield shall be an integer constant epilntFunc, vpiRealFunc, vpiTimeFunc, or
vpiSizedFunc This field shall only be used when tigpefield is set taspiSysFunction

The compiletf calltf, and sizetffields of the s_vpi_systf data structure shall be pointers to the user-provided
applications that are to be invoked by the system task/function callback mechanism. One or more of the compiletf,
calltf, and sizetf fields can be set to NULL if they are not needed. Callbacks to the applications pointed to by the
compiletf and sizetf fields shall occur when the simulation data structure is compiled or built (or for the first
invocation if the system task or function is invoked from an interactive mode). Callbacks to the application pointed to
by thecalltf routine shall occur each time the system task or function is invoked during simulation execution.

The sizetf application shall only called if the PLI application typevfESysFunction and the sysfunctypds
vpiSizedFunc If no sizetf is provided, a user-defined system functiorpiBizedFuncshall return 32-bits.

Theuser_datdield of the s_vpi_systf data structure shall specify a user-defined value, which shall be passed back to
the compiletf, sizetf, and calltf applications when a callback occurs.

The following example application demonstrates dynamic linking of a VPI system task. The example uses an
imaginary routine, dlink(), which accepts a file name and a function name and then links that function dynamically.
This routine derives the target file and function names from the sygffhame.

link_systf(target)
char *target;
{
char task_name[strSize];
char file_name[strSize];
char compiletf_name[strSize];
char calltf_name[strSize];
static s_vpi_systf_data task_data_s = {vpiSysTask};
static p_vpi_systf data task_data_p = &task_data_s;

sprintf(task_name, “$%s”", target);
sprintf(file_name, “%s.0", target);
sprintf(compiletf_name, “%s_compiletf”, target);
sprintf(calltf_name, “%s_calltf”, target);

task_data_p->tfname = task_name;

task_data_p->compiletf = (int (*)()) dlink(file_name,
compiletf_name);

task_data_p->calltf = (int (*)()) dlink(file_name, calltf_name);

vpi_register_syst{task_data_p);

24.32.2 Initializing VPI system task/function callbacks

A means of initializing system task/function callbacks and performing any other desired task just after the simulator
is invoked shall be provided by placing routines in a NULL-terminated static avtay, startup_routines A
C function using the array definition shall be provided as follows:

void (*vlog_startup_routines[]) ();

This C function shall be provided with a VPI-compliant product. Entries in the array shall be added by the user. The
location ofvlog_startup_routines and the procedure for linkinglog_startup_routines with a software product

shall be defined by the product vendor. (Note that callbacks can also be registered or removed at any time during an
application routine, not just at startup time).

This array of C functions shall be shall be for registering system tasks and functions. User tasks and functions that
appear in a compiled description shall generally be registered by a routine in this array.

24-49
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

The following example useslog_startup_routines to register system tasks and functions and to run a user
initialization routine.

24-50

/*In a vendor product file which contains vlog_startup_routines ...*/
extern void register_my_systfs();

extern void my_init();

void (*vlog_startup_routined])() =

{

setup_report_cpu, /* user routine example in 23.24.3 */register_my_systfs,/* user
routine listed below */

0 [* must be last entry in list */
}

/* In a user provided file... */
void regiser_my_systfs()

static s_vpi_systf data systf _data_list[] = {
{vpiSysTask, 0 “$my_task”, my_task_calltf, my_task_compiletf},
{vpiSysFunc, vpilntFunc,”$my_func”, my_func_calltf, my_func_compiletf},
{vpiSysFunc, vpiRealFunc, “$my_real_func”, my_rfunc_calltf, my_rfunc_compiletf},

{0}
2
p_vpi_systf data systf data p = &(systf_data_list[0]);

while (systf_data_p->type)
vpi_register_systf(systf_data_p++);

Standards Draft, subject to change.

ovi
I THE VERILOG-AMS HARDWARE DESCRIPTION LANGUAGE (Draft 1)

24.33 vpi_remove_ch()

vpi_remove_ch()

Synopsis: Remove a simulation callback registered with vpi_register_cb().
Syntax: vpi_remove_cb(cbh_obj)

Type Description
Returns: bool 1 (true) if successful) (false) on a failure

Type Name Description
Arguments: vpiHandle cb_obj Handle to the callback object
Related Use vpi_register_chb() to register callbacks for simulation-related events
routines:

The VPI routinevpi_remove_cb()shall remove callbacks that were registered wiph register_cb() The argument
to this routine shall be a handle to the callback object. The routine shall refufimwee) if successful, and @(false)
PTE-151| on a failure. Aftewpi_remove_cb()is called with a handle to the callback, the handle is no longer valid.

24-51
Standards Draft, subject to change.

OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

24.34 vpi_scan()

vpi_scan()

Synopsis: Scan the Verilog HDL hierarchy for objects with a one-to-many relationship.
Syntax: vpi_scan(itr)

Type Description
Returns: vpiHandle Handle to an object

Type Name Description
Arguments: vpiHandle itr Handle to an iterator object returned from vpi_iterate(
Related Use vpi_iterate() to obtain an iterator handle
routines: Use vpi_handle() to obtain handles to an object with a one-to-one relationship

Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship

The VPI routinevpi_scan() shall traverse the instantiated Verilog HDL hierarchy and return handles to objects as
directed by the iterataitr. The iterator handle shall be obtained by callimg_iterate() for a specific object type.
Oncevpi_scan()returns NULL, the iterator handle is no longer valid and cannot be used again.

The following example application usepi_iterate() and vpi_scan()to display each net (including the size for
vectors) declared in the module. The example assumes it shall be passed a valid module handle.

void display_nets(mod)
vpiHandle mod;
{
vpiHandle net;
vpiHandle itr;

vpi_printf(“Nets declared in module %s\n”,
vpi_get_str(vpiFullName, mod));

itr = vpi_iterate(vpiNet, mod);
while (net =vpi_scarfitr))
{
vpi_printf(“\t%s”, vpi_get_str(vpiName, net));
if (vpi_get(vpiVector, net))
{
vpi_printf(* of size %d\n”, vpi_get(vpiSize, net));
}

else vpi_printf(“\n”);

24-52
Standards Draft, subject to change.

Scheduling Semantics

Annex A
Scheduling Semantics

This annex presents semantics of smulation cycle for analog simulation as well as mixed
A/D simulation cycle.

A.1 Analog Simulation Cycle

Simulation of a network, or system, starts with an analysis of each node to develop
equations that define the complete set of values and flows in a network. Through
transient analysis, the value and flow equations are solved incrementally with respect to
time. At each time increment, equations for each signal are iteratively solved until they
converge on a final solution.

A.l.1l Nodal Analysis

To describe a network, simulators combine constitutive relationships with Kirchhoff's
laws innodal analysigo form a system of differential-algebraic equations of the form

F(v, 1) = %+i(v,t) -0
v(0) = v,

These equations are a restatement of Kirchhoff's Flow Law.
Vis a vector containing all node values
tis time
g andi are the dynamic and static portions of the flow
f() is a vector containing the total flow out of each node

Vg is the vector of initial conditions

This equation was formulated by treating all nodes as being conservative (even signal
flow nodes). In this way, signal-flow and conservative terminals can be connected
naturally. However, this results in unnecessary KFL equations for those nodes with only
signal-flow terminals attached. This situation is easily recognized and those unnecessary
equations are eliminated along with the associated flow unknowns, which must be by
definition zero.

Version 1.4 Verilog-AMS Language Reference Manual A-1

Scheduling Semantics

A.1l.2 Transient Analysis

The equation describing the network is differential and nonlinear, which makes it
impossible to solve directly. There are a number of different approaches to solving this
problem numerically. However, all approaches discretize time and solve the nonlinear
equations iteratively.

The simulator replaces the time derivative operatqfd)) with a discrete-time finite
difference approximation. The simulation time interval is discretized and solved at
individual time points along the interval. The simulator controls the interval between the
time points to ensure the accuracy of the finite difference approximation. At each time
point, a system of nonlinear algebraic equations is solved iteratively. Most circuit
simulators use the NR method to solve this system.

Version 1.4 Verilog-AMS Language Reference Manual A-2

Scheduling Semantics

Start Analysis

v

Initialization
t<-0
v(0) <-vO0

v

Al

— $Display

v

Done? (T=t) E End

o

Update time <
t<-t+ At

Update values
v<-v+ Av | -—

'

Evaluate equations
f(v,t) =residue

¢

Co_nverged? No
residue < e
Av < A

Yes *

Y
©s Accept the No
time step?

Figure A-1: Simulation Flowchart (Transient Analysis)

A.1.3 Convergence
In the analog kernel, the behavioral description is evaluated iteratively until the NR

method converges. On the first iteration, the signal values used in expressions are
approximate and do not satisfy Kirchhoff's laws.

Version 1.4 Verilog-AMS Language Reference Manual

Scheduling Semantics

In fact, the initial values might not be reasonable, so you must write models that do
something reasonable even when given unreasonable signal values.

For example, if you compute the log or square root of a signal value, some signal values
cause the arguments to these functions to become negative, even though a real-world
system never exhibits negative values.

As the iteration progresses, the signal values approach the solution. Iteration continues
until two convergence criteria are satisfied. The first criterion is that the proposed
solution on this iterationg(J)(t), must be close to the proposed solution on the previous
iteration,vi-1(t), and

[v, D) - v.0-D | <reltol (max| v, , b,0-D))) +abstol
wherereltol is the relative tolerance amathstolis the absolute tolerance.

reltol is set as a simulator option and typically has a value of 0.001. There can be many
absolute tolerances, and which one is used depends on the quantity the signal represents
(volts, amps, and so on). The absolute tolerance is importantwyseoonverging to

zero. Withoutabstol the iteration never converges.

The second criterion ensures that Kirchhoff's flow law is satisfied:
> f,(v)| <reltol(max(] fi,(v(1))|)) + abstol
n

Wherefni(v(j)) is the flow exiting noda from branch.

Both of these criteria specify the absolute tolerance to ensure that convergence is not
precluded wheny, or f(v) go to zero. While you can set the relative tolerance once in an
options statement to work effectively on any node in the circuit, the absolute tolerance
must be scaled appropriately for its associated signal. The absolute tolerance should be
the largest signal value that is considered negligible on all the signals with which it is
associated.

The simulator uses absolute tolerance to get an idea of the scale of signals. Absolute
tolerances are typically 1,000 to 1,000,000 times smaller than the largest typical value
for signals of a particular quantity. For example, in a typical integrated circuit, the largest
potential is about 5 volts, so the default absolute tolerance for voltag&/isThe largest
current is about 1mA, so the default absolute tolerance for current is 1pA.

A.2 Mixed-Signal Simualtion Cycle

This section describes the semantics of the initialization and time-sweep phases of a
transient analysis in mixed-signal simulation cycle.

Version 1.4 Verilog-AMS Language Reference Manual A-4

Scheduling Semantics

A.2.1 Circuit Initialization

The initialization phase of a transient analysis is the process of initializing the circuit
state before advancing time.

A.2.2 dc_init Flag

Thedc_init global signal assumes a value of 1 at the beginning of the initialization
process and transitions to zero when a stable state has been reached.

This allows for a Verilog-AMS module to be customized for the initialization and time-
sweep portions of a transient analysis.

module dcNand(out,a,b);
output out;
input a, b;
reg out;

always begin
if (!dc_init)
out =#5 ~(a && b);
else
out =~(a && b);
end
endmodule

A.2.3 Transient Analysis & A/D Algorithm Synchronization

In the analog kernel time is a floating point value. In the digital kernel time is an integer
value. Hence A2D events will in general not occur exactly at digital integer clock ticks.

For the purpose of reporting results and scheduling delayed future events the digital
kernel truncates A2D events down to the earlier tick.

Any events that are scheduled with zero delay, as a result of the A2D, are not snapped
down. Instead they are processed immediately.

Consequently an A2D event that results in a D2A event being scheduled with 0 delay,
should have its effect propagated back to the analog kernel with zero delay.

Version 1.4 Verilog-AMS Language Reference Manual A-5

Scheduling Semantics

Example:

Zero delay inverter

/

A B

Connection modules

If this circuit is being simulated with a digital time resolution of 1e-9 (one nanosecond)
then all digital events will be reported by the digital kernel as having occurred at an
integer multiple of 1e-9.

If connector A detects a positive threshold crossing the resulting falling edge at
connector B should be reported to the analog kernel with no further advance of analog
time.

However the digital kernel may need to round the time of these events to the nearest
nanosecond. Thus:

If A detects a positive crossing as a result of a transient solution at time 5.27e-9 then the
digital kernel will report a rising edge at A at time 5.0e-9 and falling edge at B at time
5.0e-9, but the analog kernel will see the transition at B begin at time 5.27e-9

analog /
signal '
A digital I
I I
| ' |
B analog :\
digital I '
Version 1.4 Verilog-AMS Language Reference Manual A-6

Scheduling Semantics

A2.4 The Synchronization Loop

The digital and analog kernels will be synchronized in such a way that neither will
compute results which the other is ineligible to accept. The synchronization algorithm
may exploit characteristics of the analog and digital kernels described in the next section.
A sample run is shown here:

14

A2D
6 10 | etc.

ANALOG

DIGITAL
-

15 16

11 13

3

Version 1.4

18
D2A

T2 T3 T4 T5 T6

. Analog engine begins transient analysis and sends state information to the Digital

engine (1,2)

Digital engine begins to run using its own time steps (3); however, if there is no
D2A event, the Analog engine is not notified and the digital engine continues to
simulate to until it cannot advance its time without surpassing the time of the
analog solution (4). Control of the simulation is then returned to the analog
engine (5). The process is repeated (7,8,9,10, and 11).

If the Digital engine produces a D2A event (12), control of the simulation is
returned to the Analog engine (13). The analog engine returns to the point at
which the digital engine last surrendered control (14). The Analog engine
recalculates the analog solution up to the time when the D2A event occurred (15).
The Analog engine then takes the next time step (16).

Verilog-AMS Language Reference Manual A-7

A.2.5

Version 1.4

Scheduling Semantics

If the analog engine produces an A2D event it returns control to the Digital
engine (17), which simulates up to the time of the A2D event and then surrenders
control (18 and 19).

This process continues until transient analysis is complete.

Assumptions about the Analog and Digital Algorithms

1.

Advance of time in digital algorithm

The digital simulation has some minimum time granularity and all
digital events occur at a time that is some integer multiple of
that granularity

The digital simulator can always accept events for a given simulation time
provided only that it has not yet executed events for a later time. Once it executes
events for a given time it cannot accept events for an earlier time.

The digital simulator can always report the time of the most recently executed
event, and the time of the next pending event.

Advance of time in analog algorithm

The analog simulator advances time by calculating a sequence of solutions. Each
solution has an associated time which, unlike the digital time, is not constrained
to a particular minimum granularity.

The analog simulator cannot tell for certain the time at which the next solution
will converge. Thus, it can tell the time of the most recently calculated solution
but not the time of the next solution.

In general the analog solution is a function of one or more previous solutions.
Having calculated the solution for a given time the analog simulator can either
accept or reject that solution. It cannot calculate a solution for a future time until
it has accepted the solution for the current time.

Analog to Digital events

Analog to digital events are generated by conversion elements (which are analog/
digital behavioral models) when evaluated by the analog simulator.

Analog events (e.g. cross, initial_step, final_step) cause an analog solution of the
time at which they occur.

Thus, any analog to digital event is generated as the result of a particular transient
solution. This means that until the events are passed to the digital simulator they

Verilog-AMS Language Reference Manual A-8

Scheduling Semantics

can stay associated with the solution which produced them, and be rejected along
with the solution if it is rejected.

4. Digital to Analog events

» Digital to Analog events will cause an analog solution of the time in which they
occur.

Version 1.4 Verilog-AMS Language Reference Manual A-9

Scheduling Semantics

Version 1.4 Verilog-AMS Language Reference Manual A-10

Open Issues

Annex B

Open Issues

This annex contains the list of all open issues known to the working group at this time:

 initial conditions for ddt operators
» real valued ports (Section 8.3.3) need more/better explanation

* idtmodfunction should only be used after careful analysis and understanding of
its behavior.

» Connecting wires of different natures (analog-analog connection)

* Semantics of discipline resolutions

» Connect statement and matching different discipline connections

* Syntax and Semantics for backannotation (hierarchical references, SDF)
* Need for locally scoped parameters and variables

* VCD format for postprocessing tools

Version 1.4 Verilog-AMS Language Reference Manual B-1

Open Issues

Version 1.4 Verilog-AMS Language Reference Manual B-2

Analog Language Subset

Annex C
Analog Language Subset

Prior to the release of Verilog-AMS the OVI board approved an analog only
specification called Verilog-A v1.0. With the release of Verilog-AMS, the "official"
Verilog—A LRM is no longer supported as it is included as part of the Verilog-AMS
specification. The purpose of this Annex is to help developers define a working subset
of Verilog-AMS HDL for analog only products.

C.1 Verilog-AMS Overview

The overview in Section 1 is applicable to both Verilog-AMS and Verilog-A with the
following two additions:

1. Verilog-A overview: This Verilog-A Hardware Description Language (HDL)
language annex defines a behavioral language for analog systems. Verilog-A
HDL is derived from the IEEE 1364-1995 Verilog HDL specification and is a
subset of the Verilog-AMS language specification. This annex is intended to
cover the definition of Verilog-A HDL as proposed by Open Verilog
International (OVI).

2. Verilog-A language features: The Verilog-A is a subset of Verilog-AMS
containing only the analog semantics required for compatibility. Below is a list
of salient features of the resulting language:

Build this list!

C.2 Lexical Tokens

With the exception of certain keywords required for Verilog-AMS the chapter 2 is
applicable to both Verilog-A and Verilog-AMS. All Verilog-AMS keywords must be
supported by Verilog-A as reserved words, but Verilog-D and Verilog-AMS specific
keywords are not used. The following Verilog-AMS keywords are not required to be
supported for a fully compliant Verilog-A subset:

1. From section 2.6.2.1, Verilog-AMS Keywords: The following are the keywords
not used by Verilog-A HDL.

Version 1.4 Verilog-AMS Language Reference Manual C-1

Analog Language Subset

split with to
merged using connect

2. Fromsection 2.6.2.4, Built-in driver access functions: The following are reserved
keywords for all built-in driver access functions and are not used by Verilog-A.

driver_active driver_local driver_state
driver_count driver_next_state driver_strength
driver_delay driver_next_strength

C.3 Data Types

The data types of Chapter 3 are applicable to both Verilog-AMS and Verilog-A with the
following two exceptions.

1. Fromsection 3.4.2.2, Domain Binding: The domain binding type of discrete shall
be an error in Verilog-A

2. From section 3.5, Default Discipline: The default_discipline_directive compiler
directive is not supported in Verilog-A. All Verilog-A modules must have a
discipline defined within the module.

Note: This feature is provided to allow the use of digital modules in Verilog-AMS without editing them
to add a discipline.

C.4 Expressions

The expressions defined in Chapter 4 are applicable to Verilog-AMS and Verilog-A.

C.5 Signals

The signals defined in Chapter 5 are applicable to Verilog-AMS and Verilog-A

C.6 Analog Behavior

The analog behavior defined in Chapter 6 are applicable to Verilog-AMS and Verilog-A

C.7 Mixed Signal

Version 1.4 Verilog-AMS Language Reference Manual C-2

C.38

C.9

C.10

C.11

C.12

Analog Language Subset

Hierarchical Structure

The hierarchical structure defined in Chapter 8 is applicable to Verilog-AMS and
Verilog-A, except support for real value ports is only applicable to Verilog-AMS and
Verilog-D (see from section 8.3.3, Real valued ports).

Scheduling Sematics

The analog simulation cycle is applicable to both Verilog-AMS and Verilog-A. The
mixed signal simulation cycle from section A.2 is only applicable to Verilog-AMS.

Open Issues

Issues in annex B as they are addressed need to also be reviewed for their impact on this
section.

Syntax

This annex, defines the differences between Verilog-AMS and Verilog-A. Annex D
defines the BNF for Verilog-AMS.

Keywords

The keywords in this annex are the complete set of Verilog-AMS keywords including
those from Verilog-D. Please refer to the above section on lexical tokens to define the
list of Verilog-A keywords.

Note: All keywords of Verilog-AMS are reserved words for even Verilog-A.

C.13

C.14

Version 1.4

System Tasks and Functions

The system tasks and functions in annex F are applicable to both Verilog-AMS and
Verilog-A.

Compiler Directives

The compiler directives of annex G are applicable to both Verilog-AMS and Verilog-A.

Verilog-AMS Language Reference Manual C-3

Analog Language Subset

C.15 Standard Definitions

The definitions of annex H are applicable to both Verilog-AMS and Verilog-A.

C.16 SPICE Compatability

Annex | defines the SPICE compatilibity for Verilog-A and Verilog-AMS..

C.17 Changes from Verilog-A LRM v1.0

As part of the Verilog-AMS development some changes have occured to the current
Veriog-A. Most of these changes resulted in additional capabiliity; but some new
compability issues now exist. This section highlights these differences.

C.171 New functions

e ceil
o floor
e idtmod

Version 1.4 Verilog-AMS Language Reference Manual C-4

Analog Language Subset

C.17.2 Changes

Expression v1.0 Syntax v1.4 Syntax

port branch > I(<a>)

discontinuity discontinuity) discontinuity()

limexp $limexpexpression limexp(expression

user-defined function function analog function

bound_step bound_stephst_expressign | bound_stemXxpression

domains n/a domain continuous

modulus operator integers only now supports integer and reals
k scalar (18) n/a now supported

genevar n/a genevdéist_of genvar_identifiers
initial_step default = TRAN default = ALL

final_step default = TRAN default = ALL

C.18 Obsolete Functionality

The following statements are not supported in the current version of Verilog-AMS; they
are only noted for backward compability.

C.18.1 Forever statement

This statement is no longer supported.

C.18.2 NULL statement

This statement is no longer supported.

C.18.3 Generate statement

Thegenerate statemerd a looping construct that is unrolled at elaboration time. The
generate statement can be used only in the analog block.

The syntax of generate statement is as follows:

Version 1.4 Verilog-AMS Language Reference Manual C-5

Version 1.4

Analog Language Subset

generate_statement ::=
generategenvar identifier (start_exprend_expr [incr_expr])
statement

start_expr ::=
genvar_expression

end_expr ::=
genvar_expression

incr_expr ::=
genvar_expression

Figure C-1: Syntax for generate statement

The index must not be assigned or modified inside the loop.

Thestart_expyend_expy andincr_exprare genvar expressions - expressions containing
constants and variables declaredj@svar Thegenvar_identifiecannot be assigned to
within the generate statement.

If the start_expris less than thend_exprand thencr_expris negative, or if thetart_exprs
greater than thend_exp@and thencr_expris positive, then the generate statement does not
execute.

If the start_exprequals thend_expy theincr_expris ignored and the statement is executed
once. If theincr_expris not given, it defaults to +1 if theart_expis less than thend_expy
and -1 if thestart_expris greater than thend_expr

The statement, which can be a sequential block, is replicated with all occurrences of
genvar_identifiein the statement replaced by its value. In the first instance of the
statement, thgenvar_identifieis replaced with thetart_exprvalue. In the second, it is
replaced by the value of theart_expplus theincr_expe In the third, it is replaced by the
value of thestart_expmplus two times thancr_expt This pattern is repeated until the
start_expplus a multiple of théncr_expris greater than thend_expr if incr_expr is positive or

is less than the end_expr if incr_expr is negative

Example:

This module implements a continuously running (not clocked) analog-to-digital
converter.

module adc(in,out) ;
parameter bits=8, fullscale=1.0, dly=0.0, ttime=10n;
input in;
output [0:bits-1] out;
electrical in;
electrical [0:bits-1] out;
real sample, thresh;
genvari;

Verilog-AMS Language Reference Manual C-6

Analog Language Subset

analog begin
thresh = fullscale/2.0;
generatei (bits-1,0)begin
V(out[i]) <+ transition(sample > thresh, dly, ttime);
if (sample > thresh) sample = sample - thresh;
sample = 2.0*sample;
end
end
endmodule

Version 1.4 Verilog-AMS Language Reference Manual C-7

Analog Language Subset

Version 1.4 Verilog-AMS Language Reference Manual C-8

This annex contains the formal syntax definition of Verilog-AMS HDL. The

Syntax

Annex D
Syntax

conventions used are described in Section 1, Overview. Any category whose name
begins with the italicized wordigital_ should be interpreted by its definition in the
grammer given in ieee 1364 Annex A, and not by the local definition given herein. When
such a category is defined herein (eligital_primary ::=) then that definition should

be taken to superceed the definition in ieee 1364 when used for Verilog-AMS.

D.1 Source text

source_text ::=

description ::=

{description}

module_declaration
discipline_definition
nature_definition
connect_statement
digital_udp_declaration

module_declaration ::=

module_items ::=

module_item ::=

module module identifier [digital_list_of ports];
[module_items]
endmodule

{ module_item }
analog_block

module_item_declaration
parameter_override
module_instantiation
digital_continuous_assignment
digital_gate_instantiation
digital_udp_instantiation
digital_specify_block
digital_initial_construct
digital_always_construct

module_item_declaration ::=

Version 1.4

parameter_declaration
digital_input_declaration

Verilog-AMS Language Reference Manual

D-1

digital_output_declaration
digital_inout_declaration
digital_integer_declaration
digital_real_declaration
node_declaration
genvar_declaration
branch_declaration
function_declaration
digital_net_declaration
digital_reg_declaration
digital_time_declaration
digital_realtime_declaration
digital_event_declaration
digital_task_declaration

parameter_override ::=

defparam list_of_param_assignments

D.2 Natures

nature_definition ::=

nature_name ::=

parent_identifier :

nature nature_name
[nature_descriptions]
endnature

nature identifier
nature_identifier: parentidentifier

nature identifier
discipline_identifier.flow
discipline_identifier.potential

nature_descriptions ::=

nature_description { nature_description }

nature_description ::=
attribute= constant_expressign

attribute ::=

Version 1.4

abstol

access
ddt_nature
idt_nature

units
attribute_identifier

Verilog-AMS Language Reference Manual

Syntax

D-2

Syntax

D.3 Disciplines

| discipline_definition ::=
discipline discipline_identifier
[discipline_descriptions]
enddiscipline

discipline_descriptions ::=
| discipline_description { discipline_description }

discipline_description ::=
nature_binding
| attr_override
| domain_binding

nature_binding ::=
pot_or_flownature identifier;

| attr_override ::=
pot_or_flow. attribute_identifier= constant_expressign

pot_or_flow ::=
potential
| | flow

domain_binding ::=
domain discrete
| domain continuous

D.4 Declarations

| parameter_declaration ::=
parameter [opt_type] list_of param_assignments

opt_type ::=
real
| integer

list_of param_assignments ::=
declarator_init
| list_of param_assignmentdeclarator_init

declarator_init ::=
parameter identifier= constant_expression [{opt_value_range}]
| identifier range= constant_param_arrayinit

opt_value_range ::=
from value_range_specifier
| excludevalue_range_specifier
| excludeconstant_expression

| Version 1.4 Verilog-AMS Language Reference Manual D-3

value_range_specifier ::=

start_range_spec expressiardxpression2 end_range_spec

start_range_spec ::=

end_range_spec ::

expressionl ::

expression?2 ::

—~ r—

~ =1

constant_expression
-inf

constant_expression
inf

constant_param_arrayinit ::=
{ param_arrayinit_element_list

param_arrayinit_element_list
param_arrayinit_element {, param_arrayinit_element }

param_arrayinit_element ::=

node_declaration ::

list_ of nodes ::=

constant_expression [= value_range_specifier]
constant_expressidrconstant_expression [=
value_range_specifier}]

discipline identifier [range] list_of nodes

node identifier
hierarchical_nodeidentifier
node identifier, list_of nodes

branch_declaration ::=

branch list_of _branches

list_of branches ::=

terminals ::=

terminals list_of branch_identifiers

(node_or_port_scalar_expressjon
(node_or_port_scalar_expressiorode_or_port_scalar_expressjon

list_of branch_identifiers ::=

branch identifier [range]
branch identifier [range]list_of_branch_identifiers

genvar_declaration ::=
genvar list_of _genvar_identifiers

list_of genvar_identifiers ::=
genvar_identifier { , genvar_identifier }

Version 1.4

Verilog-AMS Language Reference Manual

Syntax

D-4

Syntax

function_declaration ::=
analog function [type]function_identifier;
function_item_declaration { function_item_declaration }
statement
endfunction

| function [digital_range_or_typefunction_identifier;

function_item_declaration { function_item_declaration }
digital_statement
endfunction

type ::=
integer
| real

function_item_declaration ::=
input_declaration
| block _item_declaration

block_item_declaration ::=
parameter_declaration
| integer_declaration
| real_declaration

D.5 Module instantiation

module_instantiation ::=
module identifier [parameter_value_assignment] instance_list

instance_list ::=
module_instance {module_instance }

module_instance ::=
name_of _instancé [list_of module_connections)]

name_of instance ::=
module_instancddentifier [range]

list_ of module_connections ::=
ordered_port_connection,{fordered_port_connection }
| named_port_connection framed_port_connection }

ordered_port_connection ::=
[node_expressionground]

named_port_connection ::=
. port_identifier ([node_expressiorground])

parameter_value_assignment ::=
(ordered_param_override_ljst
| #(named_param_override_ljst

ordered_param_override_list ::=
constant_or_constant_array_expressioondnstant_or_constant_array_expression }

Version 1.4 Verilog-AMS Language Reference Manual D-5

named_param_override_list ::=
named_param_override, hamed_param_override }

named_param_override ::=
. parameter identifier (constant_or_constant_array_expres$ion

constant_or_constant_array_expression ::=
constant_expression
| constant_array_expression

node_expression ::=
node identifier
| node identifier[expression
| node identifier[msb_constant_expression : Isb_constant_expreksion
| node_concatenation

node_concatenation ::=
{ node_expression_li$t

node_expression_list ::=
node_expression {, node_expression }

D.6 Connect statements

D.7 Behavioral statements

analog_block ::=
analoganalog_statement

analog_statement ::=
analog_block_statement

| analog_branch_contribution

| analog_indirect_branch_assignment

| analog_procedural_assignment

| analog_conditional_statement

| analog_for_statement

| analog_case_statement

| analog_event_controlled_statement

| system_task_enable

| statement

statement ::=
block _statement
| procedural_assignment
| conditional_statement
| loop_statement
| case_statement
analog_block_statement ::=
begin|[: block identifier { block item_declaration }]

Version 1.4 Verilog-AMS Language Reference Manual

Syntax

D-6

Syntax

{'analog_statement_or_null }
end

analog_statement_or_null ::=
analog_statement ! :

analog_branch_contribution ::=
bvalue<+ analog_expressian

analog_indirect_branch_assignment ::=
bvalue: nexpr== analog_expression

nexpr ::=
bvalue

| ddt(bvalue)

| idt (bvalue)

analog_procedural_assignment ::=
lexpr = analog_expressign

lexpr ::=
integer identifier
| real_identifier
| array_element

array_element ::=
integer identifier [expression
| real_identifier[expression

analog_conditional_statement ::=
if (genvar_expressignanalog_statement_or_null
[elseanalog_statement_or_null |

analog_case_statement ::=
case (analog_expression
analog_case_item { analog_case_item }
endcase

analog_case_item ::=
analog_expression,{fanalog_expression:}analog_statement_or_null
| default[:]analog_statement_or_null

analog_for_statement ::=
| for (genvar_assignmenigenvar_expression
genvar_assignmeitanalog_statement

event_controlled_statement ::=
@ (event_expressionstatement_or_null

event_expression ::=
simple_event pr event_expression]

simple_event ::=
global_event
| event_function
| identifier
| digital_eventidentifier

Version 1.4 Verilog-AMS Language Reference Manual D-7

| posedgdigital_expression
| negedgedigital_expression

digital_event_expression ::=
digital_expression
| simple_event
| digital_event_expressioar digital_event_expression

global_event ::=
initial_step [(analysis_lisf)]
| final_step[(analysis_lis)]

analysis_list ::=
analysis_name {analysis_name }

analysis_name ::=
| " analysis identifier"

event_function ::=
cross_function
| | timer_function

cross_function ::=
| cross (arg_list)

timer_function ::=
timer (arg_list)

statement_or_null ::=
statement ! :

system_task_enable ::=
system_task_namg fexpression { expression })] ;

system_task _name ::=
Sidentifier
Note: The$ may not be followed by a space.

block_statement ::=
begin|[: block identifier { block item_declaration }]
{ statement }
end

procedural_assignment ::=
lexpr = expression

conditional_statement ::=
if (expressior) statement_or_null
[elsestatement_or_null]

acase_statement ::=
case (expression
case_item {case_item}
endcase

| Version 1.4 Verilog-AMS Language Reference Manual

Syntax

D-8

case_item ::=

loop_statement ::=

D.8 Anal

expression { expression } statement_or_null
default [:] statement_or_null

repeat (expression statement

while (expressior) statement

for (procedural_assignmenexpression
procedural_assignmepstatement

og Expressions

analog_expression ::=

expression
analog_operatdrarg_list)

analog_operator ::=

ddt | idt |idtmod | delay | transition |slew| bound_step
laplace_zd|laplace_zp|laplace np|laplace_nd|discontinuity
Zi_zp|zi_zd|zi_np|zi_nd |last_crossing| ac_stim| limexp
white_noise|flicker_noise | noise_table

genvar_expression ::=

genvar_primary

unary_operator genvar_primary

genvar_expression binary_operator genvar_primary
genvar_expressidhgenvar_expressiangenvar_expresson
string

genvar_primary ::=

constant_primary
genvar_identifier
genvar_identifier [genvar_expression]
analysis (arg_list)

genvar_assignment ::=
genvar_identifiee= genvar_expression

D.9 Expressions

range ;=

[constant_expressiorconstant_expressign

constant_expression ::=

Version 1.4

constant_primary

string

unary_operator constant_primary

constant_expression binary_operator constant_expression
constant_expressidghconstant_expressiarconstant_expression
constant_array_expression

Verilog-AMS Language Reference Manual

Syntax

D-9

| attribute_reference
| built_in_function(const_arg_list)

const_arg_list ::=
constant_expression {, constant_expression }

attribute_reference ::=
node identifier . pot_or_flow . attribute_identifier

constant_primary ::=
number
| parameteridentifier
| constant concatenation

constant_array_expression ::=
{ constant_arrayinit_element {, constant_arrayinit_elemént }

constant_arrayinit_element ::=
| constant_expression
| constant_expressidrconstant_expressign

expression ::=
primary
| unary_operator primary
| expression binary_operator expression
| expressior? expression expression
| function_call
| access_function_reference
| built_in_function(arg_list)
| system_functioif arg_list)

function_call ::=
function_identifier (arg_list)

arg_list ::=
argument {, argument}

argument ::=
expression
| constant_array_expression

constant_array_expression ::=
{ constant_array_init_elemnet_list }

constant_array_init_elemnet_list ::=
NULL
| constant_array_init_element €onstant_array_init_element }

constant_array_init_element ::=
constant_expression
| constant_expression £onstant_expression }

Version 1.4 Verilog-AMS Language Reference Manual

Syntax

D-10

Syntax

access_function_reference ::=
bvalue
| pvalue
bvalue ::=
access_identifief analog_signal_lisk
analog_signal_list ::=
branch_identifier
| array_branch identifier [genvar_expression]
| node_or_portscalar_expression
| node_or_portscalar_identifier node_or_portscalar_identifier
node_or_port_scalar_expression ::=
node_or_portidentifier
| array_node_or_portidentifier [genvar_expression]
| buss_node_or_poridentifier [genvar_expression]
pvalue ::=
flow_access_identifief < port_scalar_expression)
port_scalar_expression ::=
port_identifier
| array_port identifier [genvar_expression]
| buss_portidentifier [genvar_expression]

unary_operator ::=
-]

binary_operator ::=
H - % == 1= [&& | ||
| <I<=[>]>=[&][[N ~] "] >>] <<

digital_primary ::=
primary

primary ::=

number

identifier

identifier[expression

identifier[digital_msb constant_expressiatigital_Isb_constant_expressign
digital_concatenation
digital_multiple_concatenation
digital_function_call

(digital_mintypmax_expression
string

nexpr

(expression)

number ::=
decimal_number
| real_number

decimal_number ::=
[sign] unsigned_num

real_number ::=
[sign] unsigned_numunsigned_num
| [sign]unsigned_num.funsigned_numé [sign] unsigned_num

Version 1.4 Verilog-AMS Language Reference Manual D-11

| [sign] unsigned_num.[unsigned_num [[sign] unsigned_num
| [sign] unsigned_num.[unsigned_num] scale_factor

concatenation ::=
{ expression {, expression}}

sign ::=

unsigned_num ::=
decimal_digit {_ | decimal_digit }

decimal_digit ::=
0]111213141516171819

scale_factor ::=
TIGIM|K[k|m[u|n]p]|f|a

built_in_function ::=
In |log |exp |sqrt |min |max |abs |pow | ceil | floor
| sin |cos |tan |asin |acos |atan |atan2
| sinh|cosh|tanh |asinh|acosh|atanh | hypot

driver_access_function ::=
driver_count | driver_active | driver_local | driver_state |
driver_strength | driver_delay | driver_next_state |
driver_next_strength

system_function ::=
$limexp | $realtime | $temperature | $vt

D.10 General

comment ::=
short_comment
| long_comment

short_comment :;=
/[comment_textn

long_comment ::=
/* comment_text/

comment_text ::=
{ Any_ASCII_character }

string ::=
" { Any_ASCII_character_except_newling'}
identifier ::=
IDENTIFIER [{ . IDENTIFIER }]
NOTE: The period in identifier may not be preceded or followed by a space.

Version 1.4 Verilog-AMS Language Reference Manual

Syntax

D-12

IDENTIFIER ::=
simple_identifier
| escaped_identifier

simple_identifier ::=
[a-zA-Z_]{a-zA-Z_$0-9}

escaped_identifier ::=
\{ Any_ASCII_character_except_white_space } white_space

white_space ::=
space
| tab
| newline

Version 1.4 Verilog-AMS Language Reference Manual

Syntax

D-13

Syntax

| Version 1.4 Verilog-AMS Language Reference Manual D-14

Keywords

Annex E
Keywords

This annex contains the list of all keywords used in Verilog-AMS HDL.

Version 1.4 Verilog-AMS Language Reference Manual E-1

abs
abstol
access
acos
acosh
ac_stim
always
analog
analysis
and

asin
asinh
assign
atan
atan2
atanh
begin
bound_step
branch
buf

bufifo
bufifl
case
casex
casez
cmos
connect
cos

cosh
Cross

ddt
ddt_nature
deassign
default
defparam
delay
disable
discipline
discontinuity
edge
else

end
enddiscipline
endcase

endmodule
endfunction
endnature
endprimitive
endspecify
endtable
endtask
event
exclude
exp
final_step
flicker_noise
flow

for

force
forever
fork

from
function
generate
genvar
ground
highz0
highz1
hypot

idt
idt_nature
if

ifnone

inf

initial
initial_step
inout

input
integer

join
laplace_nd
laplace_np
laplace_zd
laplace_zp
large
last_crossing
In

log

macromodule
max
medium
min
module
nand
nature
negedge
nmos
noise_table
nor

not
notif0
notifl

or
output
parameter
pmos
posedge
potential
pow
primitive
pull0
pulll
pullup
pulldown
rcmos
real
realtime
reg
release
repeat
rnmos
rpmos
rtran
rtranifO
rtranifl
scalared
sin

sinh
slew
small
specify
specparam

Verilog-AMS Language Reference Manual

Keywords

sqrt
strong0
strongl
supplyO
supplyl
table
tan
tanh
task
temperature
time
timer

to

tran
tranifO
tranifl
transition
tri

tri0

tril
triand
trior
trireg
units
vectored
vt

wait
wand
weak0
weakl
while
white_noise
wire
with
wor
xnor
xor
using
zi_nd
zi_np
zi_zd
zi_zp

E-2

F.1

F.2

Version 1.4

System Tasks and Functions

Annex F
System Tasks and Functions

This annex describes system tasks and functions available in Verilog-AMS HDL.

Environment parameter functions

These functions return information about the current environment parameters as a real
number $realtimeandstemperatur€lo not take any input argumensst can optionally
have temperature (in Kelvin units) as an input argument.

Function Returns

$realtime Current simulation time in seconds.
$temperature Ambient temperature in kelvin.

$vt Thermal voltageKT/ q).

$vt(temp) Thermal voltage at given temperature.

$random function

Syntax:
$random [(seed)];

The system functiofirandom provides a mechanism for generating random numbers.
The function returns a new 32-bit random number each time it is called. The random
number is a signed integer; it can be positive or negative.

The seed parameter controls the numbershifzatdom returns. The seed parameter
must be either aregister, an integer, or a time variable. The seed value should be assigned
to this variable prior to callin§random.

Examples:

1. Where b > 0 the expressidgrgndom % b) gives a number in the following range:
[(-b+1): (b-1)]. The following code fragment shows an example of random number
generation between -59 and 59:

integer rand;
rand =$random % 60;

Verilog-AMS Language Reference Manual F-1

F.3

Version 1.4

System Tasks and Functions

2. The following example shows how adding the concatenation operator to the preceding
example gives rand a positive value from 0 to 59.

integer rand;
rand = random} % 60;

$dist_ functions

Syntax:

$dist_uniform (seed, start, end) ;

$dist_normal (seed, mean, standard_deviation) ;
$dist_exponential(seed, mean) ;
$dist_poisson(seed, mean) ;
$dist_chi_square(seed, degree_of freedom) ;
$dist_t (seed, degree_of freedom) ;
$dist_erlang(seed, k_stage, mean) ;

Figure F-1: Syntax for the probabilistic distribution functions

All parameters to the system functions are real values, excegettifwhich is an
integer). For the exponential, poisson, chi-square, t, and erlang functions, the parameters
mean, degree of freedom, and k_stage must be greater than 0.

Each of these functions returns a pseudo-random number whose characteristics are
described by the function name. Thathdist_uniform returns random numbers
uniformly distributed in the interval specified by its parameters.

For each system function, the seed parameter is an in-out parameter; that is, a value is
passed to the function and a different value is returned. The system functions will always
return the same value given the same seed. This facilitates debugging by making the
operation of the system repeatable. The argument for the seed parameter should be an
integer variable that is initialized by the user and only updated by the system function.
This will ensure that the desired distribution is achieved.

All functions return a real value.

In the$dist_uniform function, the start and end parameters are real inputs which bound
the values returned. The start value should be smaller than the end value.

The mean parameter, used$ulist normal, $dist_exponential $dist_poisson and
$dist_erlang is an real input which causes the average value returned by the function to
approach the value specified.

The standard deviation parameter used witttlist_normal function is an real input
which helps determine the shape of the density function. Larger numbers for standard

Verilog-AMS Language Reference Manual F-2

System Tasks and Functions

deviation will spread the returned values over a wider range. With a mean of 0 and
standard deviation of $dist_normal generates gaussian distribution.

The degree of freedom parameter used withhidtist _chi_squareand$dist_tfunctions
is an real input which helps determine the shape of the density function. Larger numbers
will spread the returned values over a wider range.

F.4 Simulation control system tasks

There are two simulation control system ta§mish and$stop.

F.4.1 $finish

Syntax:

$finish [(n)] ;
The$finish system task simply makes the simulator exit and pass control back to the host
operating system. If an expression is supplied to this task, then its value determines the

diagnostic messages that are printed before the prompt is issued. If no argument is
supplied, then a value of 1 is taken as the default.

Parameter Value Diagnostic Message
0 prints nothing
1 prints simulation time and location
2 prints simulation time, location, and statistics about the mempry
and CPU time used in simulation

F.4.2 $stop

Syntax:

$stop[(n)] ;
The $stop system task causes simulation to be suspended. This task takes an optional
expression argument (0, 1, or 2) that determines what type of diagnostic message is
printed. The amount of diagnostic messages output increases with the value of the
optional argument passed$stop

Version 1.4 Verilog-AMS Language Reference Manual F-3

F.5

F.5.1

F.5.2

F.6

Version 1.4

System Tasks and Functions

File operation tasks

$fopen

Syntax:
integer multi_channel_descriptor $fopen (" file_name") ;

The function$fopen opens the file specified as an argument and returns a 32-bit
unsigned multichannel descriptor that is uniquely associated with the file. It returns O if
the file could not be opened for writing.

The multichannel descriptor should be thought of as a set of 32 flags, where each flag
represents a single output channel. The least significant bit (bit 0) of a multichannel
descriptor always refers to the standard output. The standard output is also called channel
0. The other bits refer to channels that have been opened Bfdpensystem function.

The first call to$fopenopens channel 1 and returns a multichannel descriptor value of
2—that is, bit 1 of the descriptor is set. A second cafepenopens channel 2 and
returns a value of 4—thatis, only bit 2 of the descriptor is set. Subsequent calls to $fopen
open channels 3, 4, 5, and so on and return values of 8, 16, 32, and so on, up to a
maximum of 32 open channels. Thus, a channel number corresponds to an individual bit
in a multichannel descriptor.

$fclose

Syntax:

file_close_task ::=

$fclose (multi_channel_descriptor;
The$fclosesystem task closes the channels specified in the multichannel descriptor, and
does not allow any further output to the closed channels$fbipentask will reuse
channels that have been closed.

Displaying results

The system tasgstrobeprovides the ability to display simulation data when the simulator
has converged on a solution for all nodes.

The$strobe taskdisplays its arguments in the same order they appear in the argument
list. Each argument can be a quoted string, an expression that returns a value, or a null
argument.

The contents of string arguments are output literally except when certain escape
sequences are inserted to display special characters or specify the display format for a
subsequent expression.

Escape sequences are inserted into a string in three ways:

Verilog-AMS Language Reference Manual F-4

F.6.1

F.6.2

Version 1.4

System Tasks and Functions

— The special character \ indicates that the character to follow is a literal or non-
printable character (see Table F-1:).

— The special character % indicates that the next character should be interpreted as
a format specification that establishes the display format for a subsequent
expression argument (Table F-2:). For each % character that appears in a string,
a corresponding expression argument must be supplied after the string.

— The special character string %% indicates the display of the percent sign charac-
ter % (see Table F-1:).

Any null argument produces a single space character in the display. (A null argument is
characterized by two adjacent commas in the argument list.)

The$strobetask, when invoked without arguments, simply prints a newline character.

Escape sequences for special characters

The following escape sequences, when included in a string argument, cause special
characters to be displayed:

Table F-1: : Escape sequences for printing special characters

\n is the newline character
\t is the tab character

\\ is the \ character

\" is the " character

\ddd | is a character specified by 1 to 3 octal digfts

%% is the % character

Format specifications

Table F-2: shows the escape sequences used for format specifications. Each escape
sequence, when included in a string argument, specifies the display format for a
subsequent expression. For each % character (except %m) that appears in a string, a
corresponding expression must follow the string in the argument list. The value of the
expression replaces the format specification when the string is displayed.

Table F-2: . Escape sequences for format specifications

%h or %H display in hexadecimal format
%d or %D display in decimal format

%0 or %0 display in octal format

%b or %B display in binary format

Verilog-AMS Language Reference Manual F-5

System Tasks and Functions

Table F-2: : Escape sequences for format specifications

%c or %C display in ASCII character format

%m or %M display hierarchical name

%s or %S display as a string

Any expression argument that has no corresponding format specification is displayed
using the default decimal format$strobe.

The format specifications in Table F-3: are used with real numbers and have the full
formatting capabilities available in the C language. For example, the format
specification %10.3g specifies a minimum field width of 10 with 3 fractional digits.

Table F-3: : Format specifications for real numbers

%e or %E display ‘real’ in an exponential format

%f or %F display ‘real’ in a decimal format

%g or %G | display ‘real’ in exponential or decimal format, which-
ever format results in the shorter printed output

F.6.3 Hierarchical name format

The %m format specifier does not accept an argument. Instead, it causes the display task
to print the hierarchical name of the module, task, function, or named block that invokes
the system task containing the format specifier. This is useful when there are many
instances of the module that calls the system task. One obvious application is timing
check messages in a flip-flop or latch module; the %m format specifier will pinpoint the
module instance responsible for generating the timing check message.

F.6.4 String format

The %s format specifier is used to print ASCII codes as characters. For each %s
specification that appears in a string, a corresponding parameter must follow the string
in the argument list. The associated argument is interpreted as a sequence of 8-bit
hexadecimal ASCII codes, with each 8 bits representing a single character. If the
argument is a variable, its value should be right-justified so that the right-most bit of the
value is the least-significant bit of the last character in the string. No termination
character or value is required at the end of a string, and leading zeros are never printed.

F.7 Others - from lan’s writeup

Please look at these -- much more is needed.

Version 1.4 Verilog-AMS Language Reference Manual F-6

F.7.1

F.7.2

F.7.3

Version 1.4

System Tasks and Functions

System tasks and functions

The table below is from Section 14 of the P1364 LRM. Following this is a repeat of the
material from 4.2.3, "Environment Parameters".

The following symbols in the first column have been used to flag actions that need to be
taken:

X - task/function is already covered in Annex F

+ - P1364 definition should work in analog context also
* - see notes later in section

I - proposed extension to P1364

Display tasks

* $display{,b,h,o}
$monitor{,b,h,o0}
$monitor{on,off}

x $strobe{,b,h,o0}

* $write{,b,h,0}

$strobe always emits a newline. Propose adding $write as similar to $strobe but no
newline, and $display as same as $strobe. These all read values after convergence anc
are thus similar in flavor to $strobe (at end of time slot).

File 1/0O tasks

x $fclose

* $fdisplay{,b,h,o}
$fmonitor{b,h,o}

x $fopen

* $fstrobe{,b,h,o0}

* $fwrite{,b,h,o0}

* $readmemb

* $readmemh

I Sreadmemr

$fopen/$fclose are in Annex F. $fstrobe, etc, are missing. Propose same approach as for
'display tasks' for $fstrobe, etc.

Propose augmenting the $readmem functions with $readmemr to read real values
(including support for scale factors like "1.5u", etc).

Verilog-AMS Language Reference Manual F-7

System Tasks and Functions

F.7.4 Timescale tasks

$printtimescale
$timeformat

F.7.5 Simulation control tasks
x $finish
X $stop

F.7.6 Timing check tasks
$hold
$period
$setup
$skew
$nochange
$recovery
$setuphold
$width

F.7.7 PLA modeling tasks
$async*
$sync*

F.7.8 Stochastic analysis tasks

$q_*
X $random

F.7.9 Simulation time functions
* $realtime
* $time
* $stime

There is a problem here. The P1364 versions return time scaled to the timescale unit of
the module. The A/MS LRM ‘environment parameter' returns "current simulation time

Version 1.4 Verilog-AMS Language Reference Manual F-8

F.7.10

F.7.11

Version 1.4

System Tasks and Functions

in seconds".

Conversion functions for reals

* $bitstotreal
* $itor
* $realtobits
* $rtoi

These should be handled by the mechanism that deals with incompatible discrete
disciplines (whatever that is).

Probabillistic distribution functions

* $dist_chi_square
* $dist_erlang

* $dist_exponential
* $dist_normal

* $dist_poisson

* $dist_t

* $dist_uniform

There are several problems here. The return type of the P1364 versions is unspecified,
but is probably intended to be a 32-bit signed integer, as for $random. The return type
of the A/MS versions has been explicity defined to be real.

Some of the arguments to these functions need to be integer and some of them need to
be real (in P1364 they are all integers):

chi_square: freedom is int

erlang: mean is real
exponential: mean is real

normal: mean, std_dev are real
poisson: mean is real

t: freedom is real <g>
uniform: start, end are integer

Verilog-AMS Language Reference Manual F-9

System Tasks and Functions

F.7.12 Environment Parameters (from 4.2.3 of A/IMS LRM)
* $realtime
* $temperature
* $vt
* $vt(temp)

As noted above, $realtime is defined differently (owing to module scaling) between the
two contexts.

Is the intention to import $temperature, etc, into P13647?

Version 1.4 Verilog-AMS Language Reference Manual F-10

G.1

Version 1.4

Compiler Directives

Annex G
Compiler Directives

All Verilog-AMS HDL compiler directives are preceded by thé ¢haracter. This
character is called accent grave. It is different from the character (’), which is the single
guote character. The scope of compiler directives extends from the point where it is
processed, across all files processed, to the point where another compiler directive
supersedes it or the processing completes.

This annex describes the following compiler directives:

“default_discipline
“default_transition
“timescale

“define

“else

“endif

“ifdef

“include

“resetall

“undef

“default_discipline

The directive default_discipline controls the node type created for implicit node
declarations (see section 3.4.4). It can be used only outside of module definitions. It
affects all modules that follow the directive, even across source file boundaries. Multiple
“default_discipline directives are allowed. The latest occurrence of this directive in the
source controls the type of nodes that will be implicitly declared. The following is the
syntax of the directive:

default_discipline_directive ::=

‘default_discipline [discipline_identifier [qualifier] [scope]]
qualifier ::=

integer |real |reg |

wire |tri |wand |triand |wor |trior |trireq |

tri0 |tril | supplyO|supplyl

scope ::= module_identifier

Figure G-1: Syntax for default nodetype compiler directive

Verilog-AMS Language Reference Manual G-1

G.2

Version 1.4

Compiler Directives

“timescale

This directive specifies the time unit and time precision of the modules that follow it. The
time unit is the unit of measurement for time values such as the simulation time and delay
values.

To use modules with different time units in the same design, the following timescale
constructs are useful:

— The “timescalecompiler directive to specify the unit of measurement for time
and precision of time in the modules in the design

The "timescalecompiler directive specifies the unit of measurement for time and delay
values and the degree of accuracy for delays in all modules that follow this directive until
anothertimescalecompiler directive is read.

The syntax for thétimescaledirective is given in Figure G-2:

timescale_compiler_directive ::=
“timescaletime_unit/ time_precision

Figure G-2: Syntax for timescale compiler directive

Thetime_unitargument specifies the unit of measurement for times and delays.

Thetime_precisiorargument specifies how delay values are rounded before being used in
simulation. The values used are accurate to within the unit of time that is specified here.
The smallestime_precisiorargument of all théetimescalecompiler directives in the

design determines the time unit of the simulation.

Thetime_precisiorargument shall be at least as precise asiitee unitargument; it cannot
specify a longer unit of time thaime_unit

The integers in these arguments specify an order of magnitude for the size of the value;
the valid integers are 1, 10, and 100. The character strings represent units of
measurement; the valid character stringssamngs, us, ns, ps, andfs.

The units of measurement specified by these character strings are given in Table G-1:

Table G-1: Arguments of time_precision

Character Unit of
string measurement

S seconds

ms milliseconds

us microseconds

Verilog-AMS Language Reference Manual G-2

G.3

Version 1.4

Compiler Directives

Table G-1: Arguments of time_precisioncontinued

Character Unit of
string measurement

ns nanoseconds

ps picoseconds

fs femtoseconds

The following example shows how this directive is used

‘timescalelns/ 1ps

Here, all time values in the modules that follow the directive are multiples of 1 ns
because theme_unitargument is “1 ns”. Delays are rounded to real numbers with three
decimal places—or precise to within one thousandth of a nanosecond—because the
time_precisiorargument is “1 ps,” or one thousandth of a nanosecond.

Consider the following example:

‘timescalel0us/ 100ns

The time values in the modules that follow this directive are multiples of 10 s because
thetime_unitargument is “10 us”. Delays are rounded to within one tenth of a
microsecond because ttree_precisiorargument is “100 ns,” or one tenth of a
microsecond.

“default_transition

The transition time directive specifies the default value for rise and fall time for
transition filter (section 4.4.8). There are no scope restrictions for this directive. The
syntax for this directive is shown below in Figure G-3:

default_transition_compiler_directive ::=
“default_transition transition_time

Figure G-3: Syntax for default transition compiler directive

Thetransition_timels an integer value. For all transition filters that follow this directive
and do not have rise time and fall time arguments specifi@tition_timeis used as the
default rise and fall time value. If another transition time directive is encountered in the
subsequent source description, the transition filters following the newly encountered
directive derive their default rise and fall time from the transition time value of the newly
encountered directive. In other words, the default rise and fall times for a transition filter

Verilog-AMS Language Reference Manual G-3

G.4

G41

Version 1.4

Compiler Directives

are derived from theansition_timevalue of the directive that immediately precedes the
transition filter.

If transition time directive is not used in the description, thesition_timedefaults to the
smallest time precision specified by the timescale directive.

“define and "undef

A text macro substitution facility has been provided so that meaningful names can be
used to represent commonly used pieces of text. For example, in the situation where a
constant number is repetitively used throughout a description, a text macro would be
useful in that only one place in the source description would need to be altered if the
value of the constant needed to be changed.

“define

The directive define creates a macro for text substitution. This directive can be used
both inside and outside module definitions. After a text macro is defined, it can be used
in the source description by using the (°) character, followed by the macro name. The
compiler substitutes the text of the macro for the string "'macro_name. All compiler
directives are considered pre-defined macro names; it is illegal to re-define a compiler
directive as a macro name.

A text macro can be defined with arguments. This allows the macro to be customized for
each use individually.

The syntax for text macro definitions is as follows:

text_macro_definition ::=
“define text_macro_name macro_text

text_macro_name ::=
text_macroidentifier [(list_of formal_argumentg]

list_ of formal_arguments ::=
formal_argumentidentifier { , formal_argumentidentifier }

Figure G-4: Syntax for text macro definition

The macro text can be any arbitrary text specified on the same line as the text macro
name. If more than one line is necessary to specify the text, the newline must be preceded
by a backslash (\). The first newline not preceded by a backslash will end the macro text.
The newline preceded by a backslash is replaced in the expanded macro with a newline
(but without the preceding backslash character).

Verilog-AMS Language Reference Manual G-4

Version 1.4

Compiler Directives

When formal arguments are used to define a text macro, the scope of the formal
arguments extend up to the end of the macro text. A formal argument can be used in the
macro text in the same manner as an identifier.

If a one-line comment (that is, a comment specified with the characters //) is included in
the text, then the comment does not become part of the text substituted. The macro text
can be blank, in which case the text macro is defined to be empty and no text is
substituted when the macro is used.

The syntax for using a text macro is as follows:

text_macro_usage ::=
“text_macroidentifier [(list_of actual_argumenjg

list_of actual_arguments ::=
actual_argument {actual_argument }

actual_argument ::=
expression

Figure G-5: Syntax for text macro usage

For an argument-less macro, the text is substituted “as is” for every occurrence of
“text_macro. However, a text macro with one or more arguments must be expanded by
substituting each formal argument with the expression used as the actual argumentin the
macro usage.

Once a text macro name has been defined, it can be used anywhere in a source
description; that is, there are no scope restrictions. Text macros may be defined and used
interactively.

The text specified for macro text can not be split across the following lexical tokens:

— comments
— numbers
— strings

— identifiers
— keywords
— operators

Examples:
“define M_PI 3.14159265358979323846

Verilog-AMS Language Reference Manual G-5

Compiler Directives

“define size 8
electrical [1:" size] vout;

/ldefine an adc with variable delay
“define var_adc(dly) adc #(dly)

“var_adc(2) g121 (g21, n10, n11);
“var_adc(5) g122 (g22, n10, n11);
The following is illegal syntax because it is split across a string:

“definefirst_half "start of string
$display(“first_half end of string");

Note: Text macro names can not be the same as compiler directive keywords.

Note: Text macro names can re-use names being used as ordinary identifiers. For example,
signal_nameand’signal_nameare different.

Note: Redefinition of text macros is allowed; the latest definition of a particular text macro read by
the compiler prevails when the macro name is encountered in the source text.

G.4.2 ‘undef

The directive undef undefines a previously defined text macro. An attempt to undefine
atext macro that was not previously defined usindefine compiler directive can result
in a warning. The syntax foundef compiler directive is as follows:

undefine_compiler_directive ::=
“undef text_macro_name

Figure G-6: Syntax for undef compiler directive

An undefined text macro has no value.

G.5 ifdef, "else, “endif

These conditional compilation compiler directives are used to optionally include lines of
a Verilog-AMS HDL source description during compilation. Tiigef compiler

directive checks for the definition of a variable name. If the variable name is defined then
the lines following theifdef directive are included. If the variable name is not defined
and an elsedirective exists then this source is compiled.

These directives may appear anywhere in the source description.
Situations where thafdef, "else and endif compiler directives may be useful include:

Version 1.4 Verilog-AMS Language Reference Manual G-6

Compiler Directives

— selecting different representations of a module such as behavioral, structural, or
mixed level

— choosing different timing or structural information

— selecting different stimulus for a given simulation run

The’ifdef, "else and endif compiler directives have the following syntax:

conditional_compilation_directive ::=
‘ifdef text_macro_name
first_group_of_lines
[else
second_group_of_lines
“endif]

Figure G-7: Syntax for conditional compilation directives

The text macro name is a Verilog-AMS HDL identifier. The first group of lines and the
second group of lines are parts of a Verilog-AMS HDL source descriptioneldee
compiler directive and the second group of lines are optional.

The’ifdef, "else and endif compiler directives work in the following manner:

— When an’ifdef is encountered, the text macro name is tested to see if it is
defined as a text macro name usiidgefine within the Verilog-AMS HDL
source description.

— If the text macro name is defined, the first group_of_lines is compiled as part of
the description. If there is arlsecompiler directive, the second group of lines
is ignored.

— If the text macro name has not been defined, the first group of lines is ignored. If
there is anelsecompiler directive the second group of lines is compiled.

Note: Any group of lines that the compiler ignores still must follow the Verilog-AMS HDL lexical
conventions for white space, comments, numbers, strings, identifiers, keywords, and operators.

Note: These compiler directives may be nested.

G.6

Version 1.4

‘include

The file inclusion {include) compiler directive is used to insert the entire contents of a
source file in another file during compilation. The result is as though the contents of the
included source file appear in place of tmelude compiler directive. Theinclude
compiler directive can be used to include global or commonly used definitions and tasks
without encapsulating repeated code within module boundaries.

Advantages of using thanclude compiler directive include the following:

Verilog-AMS Language Reference Manual G-7

Compiler Directives

— providing an integral part of configuration management
— improving the organization of Verilog-AMS HDL source descriptions
— facilitating the maintenance of Verilog-AMS HDL source descriptions

The syntax for théinclude compiler directive is as follows:

include_compiler_directive ::=
“include "filename'

Figure G-8: Syntax for include compiler directive

The compiler directiveinclude can be specified anywhere within the Verilog-AMS
HDL description. Thdilenameis the name of the file to be included in the source file.
Thefilenamecan be a full or relative path name.

Only white space or a comment may appear on the same line asthde compiler
directive.

A file included in the source usingclude compiler directive may contain other
“include compiler directives. The number of nesting levels for included files are finite.

Examples:
Examples of legal comments for theclude compiler directive are as follows:
“include "parts/count.v"

“include "fileA"
“include "fileB" // including fileB

Note: Implementations may limit the maximum number of levels to which include files can be
nested, but the limit shall be at least 15.

G.7 ‘resetall

When ' resetall compiler directive is encountered during compilation, all compiler
directives are set to the default values. This is useful for ensuring that only those
directives that are desired in compiling a particular source file are active.

The recommended usage is to plaesetall at the beginning of each source text file,
followed immediately by the directives desired in the file.

| Version 1.4 Verilog-AMS Language Reference Manual G-8

Standard Definitions

Annex H
Standard Definitions

This annex contains the standard definition package for Verilog-AMS HDL

“ifdef DISCIPLINES_H
“else
“define DISCIPLINES _H 1

1
/I Natures and Disciplines
1

discipline logic
domain discrete;
enddiscipline

/7\-

* Default absolute tolerances may be overriden by setting the
* appropriate _ABSTOL prior to including this file

*

/I Electrical

/I Current in amperes
nature Current
units ="A"
access =1,
idt_nature = Charge;
‘ifdef CURRENT_ABSTOL
abstol ='CURRENT_ABSTOL;
“else
abstol =1le-12;
“endif
endnature

/I Charge in coulombs
nature Charge
units ="coul";
access =0Q;
ddt_nature = Current;
“ifdef CHARGE_ABSTOL
abstol ='CHARGE_ABSTOL;
“else
abstol =1e-14;
“endif
endnature

Version 1.4 Verilog-AMS Language Reference Manual H-1

Standard Definitions

/I Potential in volts
nature Voltage
units ="V";
access =V,
idt_nature = Flux;
“ifdef VOLTAGE_ABSTOL
abstol ='VOLTAGE_ABSTOL,;

“else

abstol = le-6;
“endif
endnature
/I Flux in Webers
nature Flux

units ="Wb",

access = Phi;
ddt_nature = Voltage;
“ifdef FLUX_ABSTOL

abstol ='FLUX_ ABSTOL,;
“else

abstol =1le-9;
“endif
endnature

/I Conservative discipline

discipline electrical
potential Voltage;
flow Current;

enddiscipline

/I Signal flow disciplines

discipline voltage
potential Voltage;

enddiscipline

discipline current
potential Current;
enddiscipline

/I Magnetic
/I Magnetomotive force in Ampere-Turns.
nature Magneto_Motive_Force
units ="A*turn";
access = MMF;
“ifdef MAGNETO_MOTIVE_FORCE_ABSTOL

abstol = MAGNETO_MOTIVE_FORCE_ABSTOL;
“else

abstol =1le-12;
“endif
endnature

Version 1.4 Verilog-AMS Language Reference Manual H-2

Standard Definitions

/I Conservative discipline

discipline magnetic
potential Magneto_Motive_Force;
flow Flux;

enddiscipline

/I Thermal

/I Temperature in Kelvin
nature Temperature
units ="K";
access = Temp;
“ifdef TEMPERATURE_ABSTOL
abstol = TEMPERATURE_ABSTOL;
“else
abstol =1e-4;
“endif
endnature

/I Power in Watts
nature Power
units ="W"
access = Pwr;
“ifdef POWER_ABSTOL

abstol ='POWER_ABSTOL,;
“else

abstol =1le-9;
“endif
endnature

/I Conservative discipline
discipline thermal
potential Temperature;
flow Power;
enddiscipline

/I Kinematic

/I Position in meters
nature Position

units ="m";

access = Pos;

ddt_nature = Velocity;
“ifdef POSITION_ABSTOL

abstol ='POSITION_ABSTOL;
“else

abstol = 1le-6;
“endif
endnature

Version 1.4 Verilog-AMS Language Reference Manual H-3

Standard Definitions

/I Velocity in meters per second
nature Velocity
units ="m/s";
access = Vel;
ddt_nature = Acceleration;
idt_nature = Position;
“ifdef VELOCITY_ABSTOL
abstol ='VELOCITY_ABSTOL;

“else
abstol =1e-6;
‘endif
endnature
/I Acceleration in meters per second squared
nature Acceleration
units ="m/s"2";
access = Acc;
ddt_nature = Impulse;
idt_nature = Velocity;

“ifdef ACCELERATION_ABSTOL
abstol = ACCELERATION_ABSTOL;

“else

abstol =1e-6;
‘endif
endnature
/I Impulse in meters per second cubed
nature Impulse

units ="m/s"3"

access = Imp;

idt_nature = Acceleration;

“ifdef IMPULSE_ABSTOL
abstol ='IMPULSE_ABSTOL;

“else
abstol = 1le-6;

“endif

endnature

/I Force in Newtons
nature Force

units ="N";

access =F;
“ifdef FORCE_ABSTOL

abstol ='FORCE_ABSTOL,;

“else
abstol =1e-6;

‘endif

endnature

/I Conservative disciplines

discipline kinematic
potential Position;
flow Force;

enddiscipline

Version 1.4 Verilog-AMS Language Reference Manual

discipline kinematic_v
potential Velocity;
flow Force;

enddiscipline

// Rotational

/I Angle in radians
nature angle

units ="rads";

access = Theta;

ddt_nature = Angular_Velocity;
“ifdef ANGLE_ABSTOL

abstol = ANGLE_ABSTOL,;
“else

abstol = 1le-6;
“endif
endnature

/I Angular Velocity in radians per second
nature Angular_Velocity
units ="rads/s";
access = Omega;
ddt_nature = Angular_Acceleration;
idt_nature = Angular_Velocity;
“ifdef ANGULAR_VELOCITY_ABSTOL
abstol = ANGULAR_VELOCITY_ABSTOL;
“else
abstol =1e-6;
“endif
endnature

/I Angular acceleration in radians per second squared
nature Angular_Acceleration

units ="rads/s"2";

access = Alpha;

ddt_nature = Angular_Velocity;
“ifdef ANGULAR_ACCELERATION_ABSTOL

abstol = ANGULAR_ACCELERATION_ABSTOL;
“else

abstol =1e-6;
“endif
endnature

/I Torque in Newtons
nature Angular_Force
units ="N*m";
access = Tau;
“ifdef ANGULAR_FORCE_ABSTOL
abstol = ANGULAR_FORCE_ABSTOL;
“else
abstol = 1le-6;
“endif
endnature

Version 1.4 Verilog-AMS Language Reference Manual

Standard Definitions

/I Conservative disciplines
discipline rotational

potential Angle;

flow Angular_Force;
enddiscipline

discipline rotational_omega
potential Angular_Velocity;
flow Angular_Force;
enddiscipline

‘endif

Version 1.4

Verilog-AMS Language Reference Manual

Standard Definitions

H-6

/l Mathematical and physical constants

“ifdef CONSTANTS_H
“else
‘define CONSTANTS H 1

/I M_is a mathmatical constant

“define M_E 2.7182818284590452354

“define M_LOG2E 1.4426950408889634074

“define M_LOG10E 0.43429448190325182765
“define M_LN2 0.69314718055994530942
“define M_LN10 2.30258509299404568402
“define M_PI 3.14159265358979323846
“define M_TWO_PI 6.28318530717958647652
“define M_PI_2 1.57079632679489661923
“define M_PI_4 0.78539816339744830962
“define M_1_PI 0.31830988618379067154
“define M_2_PI 0.63661977236758134308
“define M_2_SQRTPI 1.12837916709551257390
“define M_SQRT2 1.41421356237309504880
“define M_SQRT1_2 0.70710678118654752440

/I P_is a physical constant

/I charge of electron in coulombs

“define P_Q 1.6021918e-19
/I speed of light in vacuum in meters/sec

“define P_C 2.997924562e8
/I Boltzman's constant in joules/kelvin

“define P_K 1.3806226e-23
/I Plank's constant in joules*sec

“define P_H 6.6260755e-34
/I permittivity of vacuum in farads/meter

“define P_EPSO 8.85418792394420013968e-12
/I permeability of vacuum in henrys/meter

“define P_UO (4.0e-7 *"M_PI)
/I zero celsius in kelvin

“define P_CELSIUSO 273.15

‘endif

Version 1.4 Verilog-AMS Language Reference Manual

Standard Definitions

Standard Definitions

Version 1.4 Verilog-AMS Language Reference Manual H-8

.1

1.1.1

1.1.2

Version 1.4

SPICE Compatibility

Annex |
SPICE Compatibility

Introduction

Analog simulation has long been performed withcg and $ICElike simulators. As

such, there is a huge legacy @& netlists. In addition, 8cE provides a rich set of
predefined models and it is considered neither practical nor desirable to convert these
models into a Verilog behavioral description. In order for Verilog to be embraced by the
analog design community, it is important that Verilog provide an appropriate degree of
SPICE compatibility. This annex describes the degree of compatibility that Verilog
provides and the approach taken to provide that compatibility.

Scope of Compatibility

SPICEIs not a single language, but rather is a family of related languages. The first widely
used version of 8CEwas $ICE2g6 from the University of California at Berkeley.
However, $ICE has been enhanced and distributed by many different companies, each
of which has added their own extensions to the language and the models. As a result,
there is a great deal of incompatibility even among theeESanguages themselves.

Verilog makes no judgement as to which one of the varieuse®anguages should be
supported. Instead, it states that if a simulator that supports Verilog is also able to read
SpICE netlists of a particular flavor, then certain objects defined in that flavarioES

netlist can be referenced from within a Verilog structural description. In particltH&gS
models and subcircuits can be instantiated within a Verilog module. This would also be
true for any 8ICE primitives that are built into the simulator.

Degree of Incompatibility

There are four primary areas of incompatibility between versionsioESimulators.

First the version of thecElanguage accepted by various simulators is different and to
some degree proprietary. This issues is not addressed by Verilog. So whether a particular
Verilog-AMS simulator is 8ICEcompatible, and with which particular variant afiSE

it is compatible with, is solely determined by the authors of the simulator.

The second area of incompatibility is that not &licg simulators support the same set
of component primitives. Thus, a particula®SE netlist may reference a primitive that

is unsupported. Verilog offers no alternative in this case other than the possibility that if
the model equations are known, the primitive may be rewritten as a module.

Verilog-AMS Language Reference Manual -1

SPICE Compatibility

The third area of incompatibility is that the names of the built+ncg primitives, their
parameters, or their ports might differ from simulator to simulator. This is particularly
true because many primitives, parameters, and ports are unnanrecErV#en

instantiating ®ICE primitives in Verilog, the primitives must, and parameters and ports
can, be named. Since there are no established standard names, there is a high likelihood
of incompatibility cropping up in these names. To reduce this, a list is given as to what
names must be used for the more common components in the next section. However, it
is not possible to anticipate alb@E primitives and parameters that will be supported,

and so different implementations may end up using different names. However, this level
of incompatibility can be overcome by using wrapper modules to map names.

The final area of incompatibility is in the mathematical description of the built-in
primitives. As with the netlist syntax, through the years incompatible enhancements of
the models creep in. Again, Verilog offers no solution in this case other than the
possibility that if the model equations are known, the primitive may be rewritten as a
module.

.2 Accessing SpPICE Objects from Verilog

If an implementation of a Verilog tool supporteISE compatibility, then it is expected

to provide the basic set oP&E primitives (as listed in the “Preferred Primitive,
Parameter, and Port Names” section on page -4). Itis also expected that it will be able to
read $ICE netlists that contain models and subcircuit statements.

SPICE primitives that are built-in to the simulator are treated in the same manner as
Verilog built-in primitives. However, while the Verilog build-in primitives are
standardized, theP&CE primitives are not. All aspects oP&E primitives are
implementation dependent.

In addition to $ICE primitives, it is also possible to access subcircuits and models
defined within ®I1CE netlists. The subcircuits and models contained within thesS
netlist are treated as module definitions.

1.2.1 Case Sensitivity

SPICEnetlists are case insensitive where as Verilog descriptions are case sensitive. From
within Verilog, a mixed case name will first match the same name with identical case if

it were defined in a Verilog description. However, if no exact match is found, then the
mixed case name will match the same name defined withioESegardless of the case.

1.2.2 Examples

1.2.2.1 Accessing S pICE Models
Consider the following 8ce model file being read by a Verilog-AMS simulator.

Version 1.4 Verilog-AMS Language Reference Manual -2

SPICE Compatibility

.MODELVERTNPN NPN BF=80 IS=1E-18 RB=100 VAF=50
+ CIE=3PF CJC=2PF CJS=2PF TF=0.3NS TR=6NS

This model could be instantiated in a Verilog module as shown below.

module diffPair (c1, b1, e, b2, c2); c c2
electrical c1, b1, e, b2, c2;
bl b2

vertNPN Q1 (c1, bl, e,);
vertNPN Q2 (.c(c2), .b(b2), .e(e));

endmodule

Unlike with SPICE, the first letter of the instance name, in this @$@andQ?2, is not
constrained by the primitive type. For example, they can just as eaSilydra T2.

e

The ports and params of the BJT are determined by the BJT primitive itself and not by
the model statement for the BJT. More on this in the next major section. The BJT has 3
mandatory ports (collector, base, and emitter) and one optional port (the substrate). In
the instantiation o1 the ports are passed by order. WiB the ports are passed by
name. In both cases, the optional substrate port is defaulted by simply not giving it.

1.2.2.2 Accessing S PICE Subcircuits

As an example of how aP&E subcircuit is referenced from Verilog, consider the
following SPICE subcircuit definition of an oscillator.

.SUBCKT ECPOSC (OUT GND)
VCC VCC GND 5
IEE E GND 1MA
Q1 VCC B1 E VCC VERTNPN
Q2 OUT B2 E OUT VERTNPN
L1 VCC OUT 1UH
C1VCC OUT 1P IC=1
C2 OUT B1 272.7PF
C3 B1 GND 3NF
R1 B1 GND 10K
C4 B2 GND 3NF
R2 B2 GND 10K
.ENDS ECPOSC

This oscillator would be referenced from Verilog as follows:

module osc (out, gnd);
electrical out, gnd;

ecpOsc Oscl (out, gnd);
endmodule

Notice that in Verilog the name of the subcircuit instance is not constrained to start with
Xasitisin ®ICE

1.2.2.3 Accessing S PICE Primitives

To show how variousiCE primitives would be accessed from Verilog, the above
subcircuit is translated to native Verilog.

Version 1.4 Verilog-AMS Language Reference Manual -3

SPICE Compatibility

module ecpOsc (out, gnd);
electrical out, gnd;

vsource #(.dc(5)) Vcc (vee, gnd);
isource #(.dc(1m)) lee (e, gnd);
vertnpnQ1 (vcc, bl, e, vce);
vertnpnQ?2 (out, b2, e, out);
inductor #(.1(1u)) L1 (vcc, out);
capacitor #(.c(1p), .ic(1)) C1 (vcc, out);
capacitor #(.c(272.7p)) C2 (out, bl);
capacitor #(.c(3n)) C3 (b1, gnd);
resistor #(.r(10k)) R1 (b1, gnd);
capacitor #(.c(3n)) C4 (b2, gnd);
resistor #(.r(10k)) R2 (b2, gnd);
endmodule

1.3 Preferred Primitive, Parameter, and Port Names

The following table gives required names for primitives, parameters, and ports that are
otherwise unnamed iNPECE. For connection by order instead of by name, the ports and

Primitive Name Port Name Parameter Name
resistor p, n r, tcl, tc2
capacitor p, N c,ic
inductor p, n l, ic
| vsource p, N see section 1.3.1
| isource sink, src see section 1.3.1
diode* a,c area
bjt* c,b,es area
mosfet* d,g,sb w, |, ad, as, pd, ps, nrd, nrs
jfet* d, g s area
mesfet* d,g,s area
VCVS p, N, ps, ns gain
VCCS sink, src, ps, ns gm
tline t1, b1, t2, b2 z0, td, f, nl

parameters must be given in the order listed. The discipline of the ports for these
primitives shall beslectrical and their descriptions shall beut .

| Version 1.4 Verilog-AMS Language Reference Manual -4

1.3.1

Version 1.4

*The names diode, bjt, jfet, and mosfet are never used from within Verilog because these
components require model. Thus the model nhame is used in Verilog, not the primitive

name.

Independent Sources

The parameterization of independent source is more complicated than other components.
The sources have several different modes, which are selected by the string parameter
type This parameter takes the name of a mode as its value. The parameters associated

SPICE Compatibility

with each mode are given in the following table.

Mode Name Description
all modes (type Waveform type, possible values are “dc’
“pulse”, “pwl”, “sine”, or “exp”.
mag, phase Small signal level and phase.
“dc” dc DC level.
“pulse” valo, vall Pulse levels.
delay Start time of first pulse.
rise, fall Pulse rise and fall time.
width Pulse width.
period Pulse period.
“pwl” wave Vector of time/value pairs that define the
waveform.
“sine” dc DC level of sinusoid.
ampl Amplitude of sinusoid.
freq Frequency of sinusoid.
delay Start time of first pulse.
damp Damping factor of sinusoid.
sinephase Phase of sinusoid.

ammodindex

AM index of modulation.

ammodfreq AM modulation frequency.
ammodphase AM modulation phase.
fmmodindex FM index of modulation.
fmmodfreq FM modulation frequency.

Verilog-AMS Language Reference Manual -5

SPICE Compatibility

Mode Name Description
“exp” valo, vall Equilibrium levels.
tdO, td1 Start time for transitions to valO, vall.
tauO, taul Time constant for transition to valO, vall.
all modes |[mag, phase Small signal level and phase.

To specify source parameters by order, only the parameter for one waveshape can be
given. The first parameter would be the type and the remaining parameters must be given
in the order specified in the following table.

Mode Parameter Order
dc “dc”, dc, mag, phase
pulse “pulse”, valO, vall, delay, rise, fall, width, periog
pwil “pwl”, wave
sine “sine”, dc, ampl, freq, delay, damp
exp “exp”, valO, vall, td0, tauO, td1, taul
1.3.2 Unsupported Components

Verilog does not support the concept of passing an instance name as a parameter. As
such, the following components are not supported: ccvs, cccs, and mutual inductors;
however, these primitives can be instantiated inside a subcircuit.

1.4 Other Issues

1.4.1 Multiplicity Factor on Subcircuits

Some ®ICE simulators support a multiplicity factor or “M” factor parameter on
subcircuits without the parameter being explicitly being declared. This factor is typically
used to indicate that the subcircuit should be modeled as if there are a specified number
of copies in parallel. If supported by the implementation, the automatic “M” factors
would be supported for subcircuits defined iPi&E but not for subcircuits defined as a
modules in Verilog. Thus in the above examples, if thesSsubcircuit of the

“Accessing Spice Subcircuits” section on page -3were instantiated a multiplicity factor
could be specified (assuming the simulator implementation supports multiplicity factors
on SPICE subcircuits. However, one could not specify a multiplicity factor when

Version 1.4 Verilog-AMS Language Reference Manual -6

SPICE Compatibility

instantiating the equivalent Verilog module of the shown in "Accessing Spice
Primitives" (section 1.2.2.3).

1.4.2 Binning and Libraries

Some ®PICEnetlists provide mechanisms for mapping an instance to a group of models
with the final determination of which model is used based on rules encapsulated in the
SpICE netlist. Examples include model binning or corners support. From within an
instance statement it appears as if the instance is referencing a simple model, thus
supporting these capabilities in Verilog is provided by default.

| Version 1.4 Verilog-AMS Language Reference Manual -7

SPICE Compatibility

| Version 1.4 Verilog-AMS Language Reference Manual -8

Glossary

Annex J
Glossary

Glossary of Terms

B

behavioral description

A mathematical mapping of inputs to outputs for a module, including intermediate
variables and control flow.

behavioral model

A version of a module with a unique set of parameters designed to model a specific

component.

block
A level within the behavioral description of a module, delimitedéginandend

branch
A relationship between two nodes and their attached quantities within the behavioral
description of a module. Each branch has two quantities, a value and a flow, with a
reference direction for each.

C

component

A fundamental unit within a system that encapsulates behavior and/or structure (also
known as arelement Modules and models might represent a single component, or a
subcircuit with many components.

constitutive relationships

The essential relationships (expressions, statements) between the outputs of a module
and its inputs and parameters that define the nature of the module. These relationships
constitute a behavioral description.

Version 1.4 Verilog-AMS Language Reference Manual J-1

Glossary

control flow
The conditional and iterative statements controlling the behavior of a module. These
statements evaluate arbitrary variables, (counters, flags, and tokens), to control the
operation of different sections of a behavioral description.

child module
A module instantiated inside the behavioral description of another, “parent” module.
You must have a complete definition of the child module somewhere. A child module is
also known as submodule or instantiated module.

D

declaration

A definition of the properties of a variable or a node.

dynamic attributes

The characteristics of an expression whose value is derived from the evaluation of a
derivative (thedot function). Dynamic expressions define time-dependent module
behavior. Some functions cannot operate on dynamic expressions.

E

element
A fundamental unit within the system that encapsulates behavior and/or structure (also
known as arcomponent

F

flow
One of the two fundamental quantities used to simulate the behavior of a system. In
electrical systems, flow is current.

G

global declarations

Declarations of variables and parameters at the beginning of a behavioral description.

Version 1.4 Verilog-AMS Language Reference Manual J-2

instance

instantiation

K

Glossary

Any named occurrence of an element created from a module definition. One module
definition can occur in multiple instances.

The process of creating an instance from a module definition or simulator primitive, and
defining the connectivity and parameters of that instance. (Placing the instance in the
circuit or system.)

Kirchhoff's Laws

level

model

module

Version 1.4

Physical laws that define the interconnection relationships of nodes, branches, values,
and flows. They specify a conservation of flow in and out of a node and a conservation
of value around a loop of branches.

One block within a behavioral description, delimited by a pair of matching keywords
such as begin-end, discipline-enddiscipline.

A named instance with a unique group of parameters specifying the behavior of one
particular version of a module. You can use models to instantiate elements with
parametric specifications different than those in the original module definition.

A definition of the interfaces and behavior of a component or a function.

Verilog-AMS Language Reference Manual J-3

N

NR method

node

Glossary

Newton-Raphson method. A generalized method for solving systems of nonlinear
algebraic equations by breaking them into a series of many small linear operations
ideally suited for computer processing.

A connection pointin the system, with access functions for potential and/or flow through
underlying discipline.

node declaration

P

parameter

The statement in a module definition, identifying the names of the nodes that are
associated with the module ports or are local to the module. A node declaration also
identifies the discipline of the node, which in turn identifies the access functions.

A variable for characterizing the behavior of an instance of a module. Parameters are
defined in the first section of a module, the module interface declarations, and can be
specified each time a module is called in a netlist instance statement.

parameter declaration

pin

potential

primitive

Version 1.4

The statement in a module definition, which defines the instance parameters of that
module.

An external connection point for a module (also known tesrainal).

One of the two fundamental quantities used to simulate the behavior of a system.

A basic component that is defined entirely in terms of behavior, without reference to any
other primitives. A primitive is the smallest and simplest possible portion of a simulated
circuit or system.

Verilog-AMS Language Reference Manual J-4

Glossary

probe

An artificial branch introduced into a circuit (or system) that does not alter its behavior,
but lets the simulator to read out the potential or flow at that point.

R

reference direction

A convention for determining whether the value of a node, the flow through a branch,
the value across a branch, or the flow in or out of a terminal, is positive or negative.

reference node

The global node (which equals zero value) against which all node values are measured.
The reference node is ground in an electrical system.

run time binding

The conditional introduction and removal of value and flow sources during a simulation.
A value source can replace a flow source and vice versa. Binding a source to a specific
node or branch prevents it from going into an unknown state.

scope

The current nesting level of a block statement, which includes all lines of code within
one set of braces in a module definition.

structural definitions
Instantiating modules inside other modules through the use of module definitions and

declarations to create a hierarchical structure in the module’s behavioral description.

T

terminal

An external connection point for a module (also known pis ar ananalog porj.

Version 1.4 Verilog-AMS Language Reference Manual J-5

\Y,

Verilog-A

Verilog-AMS

Version 1.4

Glossary

A subset of Verilog-AMS detailing in the analog version of Verilog HDL (see Annex C).
This is a language for behavioral description of continuous-time systems that uses a
syntax similar to Verilog HDL standard IEEE 1364-1995.

Mixed-signal version of Verilog HDL. A language for behavioral description of

continuous-time and discrete-time systems that is based on Verilog HDL standard IEEE
1364.

Verilog-AMS Language Reference Manual J-6

Symbols
|
logical negation operator 4-1, 4-6
1=
logical inequality operator 4-1, 4-6
$dist_ functions F-2
$dist_chi_square F-2
$dist_erlang F-2
$dist_exponential F-2
$dist_normal F-2
$dist_poisson F-2
$dist_t F-2
$dist_uniform F-2
$fclose F-4
$finish F-3
$fopen F-4
$limexp 4-29
$random F-1
$realtime F-1
$stop F-3
$strobe
escape sequences F-5
format specifications F-5
$temperature F-1
$transition 4-20
$vt F-1
$vt(temp) F-1
%
in format specifications F-5
modulus operator 4-1
&
bit-wise AND operator 4-1
&&
logical AND operator 4-1, 4-6

*

arithmetic multiplication operator 4-1

in null expressions F-5
/

Index

arithmetic division operator 4-1
<
relational less-than operator 4-1, 4-5
<+
branch contribution operator 5-10
<<
left shift operator 4-2, 4-7
<=
relational less-than-or-equal operator 4-1, 4-5

logical equality operator 4-1, 4-6
>
relational greater-than operator 4-1, 4-5
>=
relational greater-than-or-equal operator 4-1,
4-5
>>
right shift operator 4-2, 4-7
?:
conditional operator 4-2
@ operator 6-9
\
for escape sequences in strings F-5

N

bit-wise exclusive OR operator 4-1

N~

bit-wise equivalence operator 4-2

in compiler directives G-1
“default_nodetype G-1
“define G-3, G-4
“else G-6
“endif G-6
“ifdef G-6
‘include G-7
‘resetall G-8
“‘timescale G-2
‘undef G-6

Version 1.4 Verilog-AMS Language Reference Manual Index-1

bit-wise inclusive OR operator 4-1

|
logical OR operator 4-1, 4-6

bit-wise negation operator 4-1

~N

bit-wise equivalence operator 4-2

A

absolute tolerance 4-14, 4-15, 4-24, A-4
abstol 3-8
AC Stimulus 4-32
Acceleration H-4
access 3-8
Access Functions 5-1, I-1
A-D converter 4-21
always procedural block 6-1
analog block 5-10
analog bus 3-14
analog operators 4-12

restrictions 4-12
analog procedural block 6-1
analysis dependent functions 4-30
analysis function 4-30
angle H-5
Angular_Acceleration H-5
Angular_Force H-5
Angular_Velocity H-5
arithmetic operators 4-1, 4-4

% 4-4

*4-4

+4-4

/4-4
arrays

of integers 3-1

of time variables 3-1
associated reference directions 1-4

B

begin-end block statement 6-5

bidirectional port 8-9

binary operators 4-3
precedence 4-3

bit-wise operators 4-6—4-7
AND 4-1

Version 1.4

Verilog-AMS Language Reference Manual

and 4-7
equivalence 4-2
exclusive nor 4-7
exclusive OR 4-1
exclusive or 4-7
inclusive OR 4-1
inclusive or 4-7
negation 4-1
unary negation 4-7
block statement
naming of 6-3
bound_step function 6-17
branch contribution operator 5-10
branch relations 5-11
Branches 3-20
branches 1-4
built-in primitives 1-5

C

calltf routines 24-49

case statement 6-5
cbAfterDelay 24-42

cbAssign 24-41
cbAtStartOfSimTime 24-42
cbDeassign 24-41

cbDisable 24-41
cbEndOfCompile 24-43, 24-47
cbEndOfRestart 24-43, 24-47
cbEndOfSave 24-43, 24-47
cbEndOfSimulation 24-43, 24-47
cbEnterinteractive 24-43, 24-47
cbError 24-43, 24-47
cbExitInteractive 24-43, 24-47
cbForce 24-41
cbinteractiveScopeChange 24-43, 24-47
cbNextSimTime 24-42
cbPLIError 24-43, 24-47
cbReadOnlySynch 24-42
cbReadWriteSynch 24-42
cbRelease 24-41
cbStartOfRestart 24-43, 24-47
cbStartOfSave 24-43, 24-47
cbStartOfSimulation 24-43, 24-47
cbStmt 24-41, 24-46
cbTchkViolation 24-43, 24-47

Index-2

cbUnresolvedSystf 24-43, 24-47
cbValueChange 24-41, 24-46
Charge H-1
circular integrator 4-15
classes of PLI routines
calltf 24-49
compiletf 24-49
comments 2-1
compatibility rules
discrete domain rule 3-18
domain incompatibility rule 3-18
empty discipline rule 3-18
flow compatibility rule 3-18
nature compatibility rule 3-18
nature incompatibility rule 3-18
node connection rule 3-18
potential compatibility rule 3-17
self rule 3-17
units value rule 3-18
Compiler directives 2-8
compiletf routines 24-49
concatenation
of names 8-15
conditional compilation G-6
conditional operator 4-2, 4-8
conditional operator ?: 4-3
conditional statement 6-4
Connecting module ports by name 8-11
Connecting module ports by ordered list 8-11
connecting ports
by name 8-11
rules 8-12
conservative branch 3-20
conservative disciplines 3-12
conservative nodes 3-12
constant expression 4-1
constitutive relationships 1-5, A-1
contribution statements 6-2
convergence A-3
Correlated noise 4-33
cross function 6-13
Current H-1
current H-2

Version 1.4

Verilog-AMS Language Reference Manual

D

ddt operator 4-14
ddt_nature 3-8
decimal notation 2-3
default

in case statement 6-6
Defining a function 4-34
defparam 3-4, 8-5-8-6
defparam statement 8-5
delay operator 4-17
delays

inertial 24-38

pure transport 24-38

transport 24-38
diagnostic messages

from $stop and $finish F-3
discipline 3-11
disciplines

conservative 3-12

empty 3-13

signal-flow 3-12
discontinuity 6-15
discrete-time finite difference approximation A-2
Domain Binding 3-12
driver_active function 7-22
driver_count function 7-22
driver_delay function 7-24
driver_local function 7-23
driver_next_state function 7-25
driver_next_strength function 7-25
driver_state function 7-23
driver_strength function 7-24

E

electrical H-2
else statement 6-4
embedding modules 8-1, 8-3
empty disciplines 3-13
end

sequential block 6-2
endcase 6-6
enddiscipline 3-11
endfunction 4-34
endmodule 8-2
equality operators

Index-3

I=4-6

== 4-6

precedence 4-6
escape sequences F-4, F-5
escaped identifiers 2-5
event

OR construct 6-10
event or 4-2
event or operator 4-8
events

global 6-10

monitored 6-10
exit simulator F-3
exponentiation 4-10
expression

evaluation order 4-4
expressions 4-11

constant 4-1

F

file inclusion G-7
filters 4-12
final_step 6-11
finite-difference approximation A-2
flicker_noise 4-33
floating-point literals 2-4
flow 1-6
flow probe 5-3
flow source 5-2
Flux H-2
for loop 6-8
Force H-4
format specifications F-5
ASCII character F-6
b or B F-5
binary F-5
corCF-6
dorD F-5
decimal F-5
horHF-5
hexadecimal F-5
hierarchical name F-6
m or M F-6
oorOF-5
octal F-5

sorSF-6
string F-6

fullname 24-26

function 4-34

functions
call 4-36
definition 4-34
distribution F-2
probability F-2
returning a value 4-35

G

generate statement C-5
global events 6-10
ground 1-4, 5-1

H

handles

vpiHandle data type 22-2
hierarchical path name 8-14
hierarchy

level 8-15

name referencing 8-14, F-6

scope 8-15

scope rules for naming 8-16

top level names 8-15
hyperbolic functions 4-10

ideal opamp 5-13
identifiers 2-5
escaped 2-5
keywords 2-6
idt operator 4-14
idt_nature 3-8
idtmod 4-15
if-else statement 6-4
omitting else from nested if 6-5
implicit declarations G-1
implicit equations 5-5
implicit nodes 3-15
Impulse H-4
indirect branch assignement 5-13
inertial delays 24-38
initial procedural block 6-1

Version 1.4 Verilog-AMS Language Reference Manual Index-4

initial_step 6-11
inout port 8-9
input port 8-9
instantiation
of modules 8-1
instantiation of modules 8-2
integer 3-1
integers
division 4-4
interconnection relationships 1-5

J
junction diode 5-6

K

keywords 2-6

kinematic H-4

kinematic_v H-5

Kirchhoff's Flow Law 1-5, A-1, A-4
Kirchhoff's laws 1-5, A-1
Kirchhoff's Value Law 1-5

L

Laplace transform filters 4-23
laplace_nd 4-25
laplace_np 4-25
laplace zd 4-24
laplace_zp 4-24
last_crossing function 4-23
left shift operator 4-2, 4-7
lexical token

comment 2-1

definition of 2-1

number 2-2

operator 2-2

types 2-1

white space 2-1
limited exponential 4-29
logical operators 4-6

14-6

&& 4-6

|| 4-6

AND 4-1

equality 4-1

inequality 4-1

negation 4-1
OR 4-1
precedence 4-6
looping statement
for loop 6-8
repeat loop 6-7
while loop 6-7

_PIH-7
Pl H-7

N

M_LOGI10E H-7
M_LOG2E H-7
M_PI H-7
M_PI_2 H-7
M_PI_4 H-7
M_SQRT1_2 H-7
M_SQRT2 H-7
M_TWO_PI H-7
magnetic H-3
Magneto_Motive Force H-2
mathematical function 4-9
mathematical functions 4-9
minus sign(-)
arithmetic subtraction operator 4-1
module 8-1
definition 8-1
instance parameter value assignment 8-6
instantiation 8-2
overriding parameter values 8-5-8-8
parameter dependencies 8-8
port 8-3
terminal 8-4
top-level 8-2
module parameter
dependencies 8-8
overriding values 8-5-8-8
modulus operator 4-1
definition 4-4
mtm_flag 24-12, 24-35
multi-channel descriptor F-4

Version 1.4 Verilog-AMS Language Reference Manual Index-5

multi-way decisions
case statement 6-5
if-else-if statement 6-5

N

name 24-26
named blocks

and scope 8-16

purpose 6-3
names

of hierarchical paths 8-14
new line character F-5
Newton-Raphson method A-3
nodal analysis A-1
node 3-6

in hierarchical name tree 8-15
nodes 1-6, 3-15
noise 4-32
noise_table 4-33
null

expression F-5
numbers 2-2

O

operator
circular integrator 4-15
idtmod 4-15

operators 4-1-4-8
-4-1
14-1, 4-6
I=4-1, 4-6
% 4-1
& 4-1
&& 4-1, 4-6
*4-1
+4-1
/4-1
<4-1,4-5
<< 4-2,4-7
<=4-1,4-5
==4-1, 4-6
>4-1,4-5
>=4-1,4-5
>>4-2,4-7
?:4-2

N 4-1

N~ 4-2

{1+ 4-1

{141

| 4-1

|| 4-1, 4-6

~4-1

~N 4-2

analog 4-12

arithmetic 4-1, 4-4
binary 2-2, 4-3

bit-wise 4-6—4-7
bit-wise AND 4-1
bit-wise equivalence 4-2
bit-wise exclusive OR 4-1
bit-wise inclusive OR 4-1
bit-wise negation 4-1
concatenation 4-1
conditional 2-2, 4-2, 4-8
definition 2-2

event or 4-2

left shift 4-2

left shift operator 4-7
logical 4-6

logical AND 4-1

logical equality 4-1
logical inequality 4-1
logical negation 4-1
logical OR 4-1

modulus 4-1

power 4-10

relational 4-1, 4-5
replication 4-1

right shift 4-2

right shift operator 4-7
shift 4-7

time derivative 4-14
time integral 4-14
unary 2-2

output port 8-9
overriding module parameter values 8-5-8-8

by name 8-7
defparam 8-5

Version 1.4 Verilog-AMS Language Reference Manual Index-6

P
P_CH-7
P_CELSIUSO H-7
P_EPSO H-7
P_HH-7
P K H-7
P_QH-7
P_UO H-7
parameter
module type 3-2
parameter assignment by name 8-5
parameter assignment by order 8-5
parentheses
and changing operator precedence 4-4
plus sign(+)
arithmetic addition operator 4-1
port 8-8-8-14
connecting by name 8-11
declaration 8-9
definition 8-8
module 8-3
rules for connecting 8-12
port access function 4-11
Port Branches 5-6
Position H-3
potential probe 5-3
potential source 5-2
pow operator 4-10
precedence
binary operators 4-3
equality operators 4-6
logical operators 4-6
relational operators 4-5
primitives J-4
probabilistic distribution functions F-3
$dist_chi_square F-2
$dist_erlang F-2
$dist_exponential F-2
$dist_normal F-2
$dist_poisson F-2
$dist_t F-2
$dist_uniform F-2
gaussian distribution F-3
probe 5-3

Version 1.4

Verilog-AMS Language Reference Manual

Probes 5-3, I-2

pulse control 24-12, 24-35
pulsere_flag 24-12, 24-35
pure transport delays 24-38

Q
QAM modulator 4-21
guantities A-4

R

real numbers 3-1-3-2
format specifications used with F-6
operators with real number operands 4-2
reference direction 1-4
reference node 1-4, 5-1
relational operators 4-1, 4-5
<4-5
<=4-5
> 4-5
>=4-5
precedence 4-5
relative tolerance A-4
repeat loop 6-7
right shift operator 4-2, 4-7
rotational H-6
rotational_omega H-6

S

S

in string display format F-6
s_cb_data structure 24-8, 24-40, 24-45
s_vpi_delay structure 24-11
S_vpi_error_info structure 24-2
S_vpi_strengthval structure 24-18
S_vpi_systf data structure 24-15, 24-48
S_vpi_time structure 24-11, 24-16, 24-39
S_vpi_value structure 24-18, 24-39
S_vpi_vecval structure 24-18
s_vpi_vlog_info structure 24-22
scalar node 3-14
scientific notation 2-3
scope

and hierarchical names 8-15

rules 8-16
seed F-2

Index-7

shift operators 4-7
<< 4-7
>> 4-7
signal access functions 4-11
signal transitions 4-18
signal-flow branch 3-20
signal-flow disciplines 3-12
signal-flow nodes 3-12
sinusoidal voltage source 6-17
slew filter 4-22
slope 4-22
source branch 5-2
Sources 5-2
standard mathematical functions 4-9
standard output F-4
stochastic analysis F-3
probabilistic distribution functions F-3
stop F-3
strings
display format F-6
switch branch 5-2
system tasks
for interrupting the simulator F-3
System tasks and functions 2-7

T

Temperature H-3

terminals 1-4

text macro substitutions G-4-G-6
and “define G-4
definition G-4
redefinition G-6
with arguments G-4

text output
vpi_mcd_close() 24-29
vpi_mcd_name() 24-30
vpi_mcd_open() 24-31
vpi_mcd_printf() 24-32
vpi_printf() 24-33

thermal H-3

time derivative operator 4-14, A-2

time integral operator 4-14

time precision G-2

time unit G-2

timer function 6-15

Version 1.4

Tolerances 4-13
top-level module 8-2
transient analysis A-2
transition 4-18
transition filter 4-18
transition function 4-20
transport delays 24-38
tree structure
of hierarchical names 8-14
trigonometric functions 4-10
type specification
parameter 3-4

U

unary operators

1 4-6

<< 4-7

>> 4-7
undescore character 2-3
units 3-8
User Defined Attributes 3-10
User defined functions 4-34

V

value 1-4
value range specification
parameter 3-5
vector branch 3-20
vector node 3-14
Velocity H-4
vlog_startup_routines array 24-49
Voltage H-2
VPI object diagrams
assignments 22-32
case statement 22-34
continuous assignments 22-27
delay controls 22-32
event controls 22-32
expressions 22-28, 22-29, 22-30
for loops 22-33
forever loops 22-33
function calls 22-26
functions 22-14
if statement 22-34
inter-module paths 22-25

Verilog-AMS Language Reference Manual

IO declarations 22-14
memories 22-21
module paths 22-25
modules 22-11, 22-12
named events 22-20, 22-31
nets 22-18
parameters 22-22
ports 22-15, 22-16, 22-17
primitives 22-23
procedural assign statement 22-35
procedural blocks 22-31
procedural deassign statement 22-35
procedural disable statement 22-35
procedural force statement 22-35
procedural release statement 22-35
processes 22-31
regs 22-19
repeat controls 22-32
repeat loops 22-33
scopes 22-14
specparams 22-22
statements 22-31
task calls 22-26
tasks 22-14
timing checks 22-25
UDPs 22-24
variables 22-20
wait control 22-33
while loops 22-33
VPI routines
callback overview 22-1
error handling 22-2
key to object diagrams 22-7
object access overview 22-2
object classifications 22-2
vpi_chk_error() 24-2
vpi_compare_objects() 24-3
vpi_free_object() 24-5
vpi_get() 24-7
vpi_get cb_info() 24-8
vpi_get_str() 24-14
vpi_get_systf info() 24-15
vpi_get time() 24-16
vpi_get_value() 24-17
vpi_get_vlog_info() 24-22

Version 1.4

vpi_handle() 24-24
vpi_handle_by_index() 24-25
vpi_handle_by name() 24-26
vpi_handle_multi() 24-27
vpi_iterate() 24-28
vpi_mcd_close() 24-29
vpi_mcd_name() 24-30
vpi_mcd_open() 24-31
vpi_mcd_printf() 24-32
vpi_printf() 24-33
vpi_put_delays() 24-34
vpi_put_value() 24-38
vpi_register_cb() 24-40, 24-45
vpi_register_systf() 24-45
vpi_remove_cb() 24-51
vpi_scan() 24-52
vpiCancelEvent 24-38
vpiForceFlag 24-38
vpiHandle 22-2
vpilnertialDelay 24-38
vpilnterModPath 24-27
vpilntFunc 24-49

vpilterator 24-28

vpiNoDelay 24-38
vpiPureTransportDelay 24-38
vpiRealFunc 24-49
vpiReleaseFlag 24-38
vpiReturnEvent 24-38
vpiScaledRealTime 24-39
vpiSchedEvent 24-38
vpiScheduled 24-38
vpiSizedFunc 24-49
vpiSysFunction 24-48, 24-49
vpiSysTask 24-48
vpiTimeFunc 24-49
vpiTimeUnit 24-7
vpiTransportDelay 24-38

\W

Watts H-3

while loop 6-7
white space 2-1
white_noise 4-32

Verilog-AMS Language Reference Manual

Index-9

Z

zi_nd 4-28

zi_np 4-28

zi_zd 4-27

zi_zp 4-27

Z-transform filters 4-26

Version 1.4

Verilog-AMS Language Reference Manual

Index-10

	Verilog-AMS Overview
	1.1 Overview
	1.2 Mixed-signal language features
	1.3 Systems
	1.3.1 Conservative systems
	1.3.1.1 Reference nodes
	1.3.1.2 Reference directions

	1.3.2 Kirchhoff’s laws
	1.3.3 Signal-flow systems
	1.3.4 Mixed conservative/signal flow systems
	1.3.5 Natures, disciplines and nodes

	1.4 Conventions used in this document
	1.5 Contents

	Lexical Conventions
	2.1 Lexical tokens
	2.2 White space
	2.3 Comments
	2.4 Operators
	2.5 Numbers
	2.5.1 Integer constants
	2.5.2 Real constants
	2.5.3 Scale factors for real constants

	2.6 Identifiers, keywords, and system names
	2.6.1 Escaped identifiers
	2.6.2 Keywords
	2.6.2.1 Verilog-AMS Keywords
	2.6.2.2 Built-in math functions
	2.6.2.3 Built-in analog functions
	2.6.2.4 Built-in analog and mixed-signal functions
	2.6.2.5 Built-in driver access functions

	2.6.3 System tasks and functions
	2.6.4 Compiler directives

	Data Types
	3.1 Integer and real datatypes
	3.2 Parameters
	3.2.1 Type Specification
	3.2.2 Value Range Specification
	3.2.3 Parameter Arrays

	3.3 Genvars
	3.4 Nodes
	3.4.1 Natures
	3.4.1.1 Derived Natures
	3.4.1.2 Attributes
	abstol
	access
	idt_nature
	ddt_nature
	units

	3.4.1.3 User Defined Attributes

	3.4.2 Disciplines
	3.4.2.1 Nature Binding
	3.4.2.2 Domain Binding
	3.4.2.3 Empty Disciplines
	3.4.2.4 Overriding Nature Attributes from Discipline
	3.4.2.5 Deriving Natures from Disciplines

	3.4.3 Node Declaration
	3.4.4 Implicit Nodes

	3.5 Default Discipline
	3.5.1 Discipline Precedence

	3.6 Node Compatibility
	3.7 Branches
	3.7.1 Branch Declaration
	3.7.2 Accessing Node and Branch Signals
	3.7.3 Accessing Attributes

	3.8 Namespace
	3.8.1 Nature and Discipline
	3.8.2 Access Functions
	3.8.3 Node
	3.8.4 Branch

	Expressions
	4.1 Operators
	4.1.1 Operators with real operands
	4.1.1.1 Real To Integer Conversion
	4.1.1.2 Arithmetic Conversion

	4.1.2 Binary operator precedence
	4.1.3 Expression evaluation order
	4.1.4 Arithmetic operators
	4.1.5 Relational operators
	4.1.6 Equality operators
	4.1.7 Logical operators
	4.1.8 Bit-wise operators
	4.1.9 Shift operators
	4.1.10 Conditional operator
	4.1.11 Event or
	4.1.12 Concatenations

	4.2 Built-In Mathematical Functions
	4.2.1 Standard Mathematical Functions
	4.2.2 Transcendental Functions
	4.2.3 Error Handling

	4.3 Signal Access Functions
	4.4 Analog Operators
	4.4.1 Restrictions on analog operators
	4.4.2 Vector or Array Arguments to Analog Operators
	4.4.3 Analog Operators and Equations
	4.4.4 Time Derivative Operator
	4.4.5 Time Integral Operator
	4.4.6 Circular Integrator Operator
	4.4.7 Delay Operator
	4.4.8 Transition Filter
	4.4.8.1 QAM Modulator
	4.4.8.2 A-D Converter

	4.4.9 Slew Filter
	4.4.10 Last_Crossing Function
	4.4.11 Laplace Transform Filters
	4.4.11.1 laplace_zp
	4.4.11.2 laplace_zd
	4.4.11.3 laplace_np
	4.4.11.4 laplace_nd
	4.4.11.5 Examples

	4.4.12 Z-Transform Filters
	4.4.12.1 zi_zp
	4.4.12.2 zi_zd
	4.4.12.3 zi_np
	4.4.12.4 zi_nd

	4.4.13 Limited Exponential
	4.4.14 Constant vs Dynamic Arguments

	4.5 Analysis Dependent Functions
	4.5.1 Analysis
	4.5.2 AC Stimulus
	4.5.3 Noise
	4.5.3.1 white_noise
	4.5.3.2 flicker_noise
	4.5.3.3 noise_table
	4.5.3.4 Noise model for diode
	4.5.3.5 Correlated noise

	4.6 User defined functions
	4.6.1 Defining an analog function
	4.6.2 Returning a value from an analog function
	4.6.3 Calling an analog function

	Signals
	5.1 Analog Signals
	5.1.1 Access Functions
	5.1.2 Probes and Sources
	5.1.2.1 Sources
	5.1.2.2 Probes

	5.1.3 Examples
	5.1.3.1 The Four Controlled Sources
	5.1.3.2 Resistor and Conductor
	5.1.3.3 RLC Circuits
	5.1.3.4 Simple Implicit Diode

	5.1.4 Port Branches
	5.1.5 Switch Branches
	5.1.6 Unassigned Sources

	5.2 Signal Access for Vector Branches
	5.3 Contribution statements
	5.3.1 Branch Contribution Statements
	5.3.2 Indirect Branch Assignments
	5.3.2.1 Indirect Assignment and Contribution

	Analog Behavior
	6.1 Analog procedural block
	6.2 Block statements
	6.2.1 Block names

	6.3 Procedural assignments
	6.4 Conditional statement
	6.4.1 Analog Conditional Statements

	6.5 Case statement
	6.5.1 Analog case statements
	6.5.2 Constant expression in case statement

	6.6 Looping statements
	6.6.1 Repeat and while statements
	6.6.2 For statements

	6.7 Events
	6.7.1 Event detection
	6.7.2 Event OR operator
	6.7.3 Event Triggered Statements
	6.7.4 Global events
	6.7.5 Monitored events
	6.7.5.1 Cross Function
	6.7.5.2 Timer Function

	6.8 Announcing Discontinuity
	6.9 Time related functions
	6.9.1 Bounding the time step

	Mixed-Signal
	7.1 Fundamentals
	7.1.1 Domains
	7.1.2 Contexts
	7.1.3 Analog and Digital Disciplines
	7.1.4 Nets, Nodes, and Signals

	7.2 Discipline Resolution and Connection Module Insertion
	7.2.1 Discipline Resolution
	7.2.2 Resolution of Discrete-time Disciplines

	7.3 Behavioral Interaction
	Verilog-AMS provides ways to :
	Analog Signal Appearing in an Digital Expression
	Digital Signal Appearing in an Analog Expression
	Analog Event Appearing in an Digital Event Control
	Digital Event Appearing in an Analog Event Control
	Common variables in both the analog and digital blocks
	7.3.1 Synchronous
	7.3.1.1 Events and Event Controls

	7.3.2 Asynchronous

	7.4 Connect Statement and Connection Module Semantics
	7.5 Automatic Insertion of Connection Modules
	7.5.1 Connection Module Selection and Insertion
	7.5.1.1 Signal Segmentation
	7.5.1.2 Connect_mode Attribute
	7.5.1.3 Attribute Merged

	7.5.2 Internal Representation, Driver Receiver Segregation
	7.5.2.1 Driver-Receiver Segregation

	7.5.3 Rules for Driver/Receiver Segregation and Connection Module Selection and Insertion
	7.5.4 Instance Names for Auto-Inserted Instances

	7.6 Back Annotation of Parasitics
	7.6.1 Port Names for Verilog Built-in Primitives

	7.7 Driver Access Functions
	7.7.1 driver_update event
	7.7.2 driver_count function
	7.7.3 driver_active function
	7.7.4 driver_local function
	7.7.5 driver_state function
	7.7.6 driver_strength function
	7.7.7 driver_delay function
	7.7.8 driver_next_state function
	7.7.9 driver_next_strength function

	Hierarchical Structures
	8.1 Modules
	8.1.1 Top�level modules
	8.1.2 Module instantiation

	8.2 Overriding module parameter values
	8.2.1 Defparam statement
	8.2.2 Module instance parameter value assignment by order
	8.2.3 Module instance parameter value assignment by name
	8.2.4 Parameter override precedence
	8.2.5 Parameter dependence

	8.3 Ports
	8.3.1 Port association
	8.3.2 Port declarations
	8.3.2.1 Port type
	8.3.2.2 Port direction

	8.3.3 Real valued ports
	8.3.4 Connecting module ports by ordered list
	8.3.5 Connecting module ports by name
	8.3.6 Port connection rules
	8.3.6.1 Compatible discipline rule
	8.3.6.2 Matching size rule
	8.3.6.3 Resolving Discipline of Undeclared Interconnect Signal

	8.3.7 Inheriting Port Natures
	8.3.8 Multi-disciplinary example

	8.4 Hierarchical names
	8.5 Scope rules

	Scheduling Semantics
	A.1 Analog Simulation Cycle
	A.1.1 Nodal Analysis
	A.1.2 Transient Analysis
	A.1.3 Convergence

	A.2 Mixed-Signal Simualtion Cycle
	A.2.1 Circuit Initialization
	A.2.2 dc_init Flag
	A.2.3 Transient Analysis & A/D Algorithm Synchronization
	A.2.4 The Synchronization Loop
	A.2.5 Assumptions about the Analog and Digital Algorithms

	Open Issues
	Analog Language Subset
	C.1 Verilog-AMS Overview
	C.2 Lexical Tokens
	C.3 Data Types
	C.4 Expressions
	C.5 Signals
	C.6 Analog Behavior
	C.7 Mixed Signal
	C.8 Hierarchical Structure
	C.9 Scheduling Sematics
	C.10 Open Issues
	C.11 Syntax
	C.12 Keywords
	C.13 System Tasks and Functions
	C.14 Compiler Directives
	C.15 Standard Definitions
	C.16 SPICE Compatability
	C.17 Changes from Verilog-A LRM v1.0
	C.17.1 New functions
	C.17.2 Changes

	C.18 Obsolete Functionality
	C.18.1 Forever statement
	C.18.2 NULL statement
	C.18.3 Generate statement

	Syntax
	D.1 Source text
	D.2 Natures
	D.3 Disciplines
	D.4 Declarations
	D.5 Module instantiation
	D.6 Connect statements
	D.7 Behavioral statements
	D.8 Analog Expressions
	D.9 Expressions
	D.10 General

	Keywords
	System Tasks and Functions
	F.1 Environment parameter functions
	F.2 $random function
	F.3 $dist_ functions
	F.4 Simulation control system tasks
	F.4.1 $finish
	F.4.2 $stop

	F.5 File operation tasks
	F.5.1 $fopen
	F.5.2 $fclose

	F.6 Displaying results
	F.6.1 Escape sequences for special characters
	F.6.2 Format specifications
	F.6.3 Hierarchical name format
	F.6.4 String format

	F.7 Others - from Ian’s writeup
	F.7.1 System tasks and functions
	F.7.2 Display tasks
	F.7.3 File I/O tasks
	F.7.4 Timescale tasks
	F.7.5 Simulation control tasks
	F.7.6 Timing check tasks
	F.7.7 PLA modeling tasks
	F.7.8 Stochastic analysis tasks
	F.7.9 Simulation time functions
	F.7.10 Conversion functions for reals
	F.7.11 Probabilistic distribution functions
	F.7.12 Environment Parameters (from 4.2.3 of A/MS LRM)

	Compiler Directives
	G.1 `default_discipline
	G.2 `timescale
	G.3 `default_transition
	G.4 `define and `undef
	G.4.1 `define
	G.4.2 `undef

	G.5 `ifdef, `else, `endif
	G.6 `include
	G.7 `resetall

	Standard Definitions
	SPICE Compatibility
	I.1 Introduction
	I.1.1 Scope of Compatibility
	I.1.2 Degree of Incompatibility

	I.2 Accessing Spice Objects from Verilog
	I.2.1 Case Sensitivity
	I.2.2 Examples

	I.3 Preferred Primitive, Parameter, and Port Names
	I.3.1 Independent Sources
	I.3.2 Unsupported Components

	I.4 Other Issues
	I.4.1 Multiplicity Factor on Subcircuits
	I.4.2 Binning and Libraries

	Glossary

