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Section 1

Verilog-AMS Overview

1.1 Overview

This Verilog-AMS Hardware Description Language (HDL) language reference man
defines a behavioral language for analog and mixed-signal systems. Verilog-AMS H
is derived from the IEEE 1364 Verilog HDL specification. This document is intended
cover the definition and semantics of Verilog-AMS HDL as proposed by Open Veri
International (OVI).

The figure below shows the components and architecture of the Verilog-AMS HDL.
Verilog-AMS HDL consists of the complete IEEE 1364-1995 Verilog HDL
specification (noted as Verilog-D in the figure), an analog equivalent for describing
analog systems (noted as Verilog-A), and extensions to both for specifying the ful
Verilog AMS HDL (noted as MS Extensions).

Figure 1-1: Verilog-AMS Architecture

The intent of Verilog-AMS HDL is to let designers of analog and mixed-signal syste
and integrated circuits create and use modules that encapsulate high-level behav
descriptions as well as structural descriptions of systems and components. The beh
of each module can be described mathematically in terms of its terminals and ext
parameters applied to the module. The structure of each component can be descri

Verilog-D
1364-1995

Verilog-A
OVI-96

Verilog-AMS

MS
Extensions
Version 1.4 Verilog-AMS Language Reference Manual 1-1



Mixed-signal language features Verilog-AMS Overview

y

se
nalog

4,

le

any

f an

s)

r

d to
terms of interconnected sub-components. These descriptions can be used in man
disciplines such as electrical, mechanical, fluid dynamics, and thermodynamics.

Verilog-AMS HDL is defined to be applicable to both electrical and non-electrical
systems description. It supportsconservative andsignal-flow descriptions by using the
terminology for these descriptions using the concepts ofnodes, branches, andports. The
solution of analog behaviors which obey the laws of conservation fall within the
generalized form of Kirchhoff’s Potential and Flow laws (KPL and KFL). Both of the
are defined in terms of the quantities (e.g. voltage and current) associated with the a
behaviors.

1.2 Mixed-signal language features

The Verilog-AMS extends the features of the digital modeling language (IEEE 136
Verilog Hardware Description Language, henceforth called Verilog-D) to provide a
single unified language with both analog and digital semantics with backward
compatibility. Below is a list of salient features of the resulting language:

• signals of both analog and digital types may be declared in the same modu

• initial, always, andanalog procedural blocks may appear in the same module

• both analog and digital signal values may be accessed (read operations) from
context (analog or digital) in the same module

• digital signal values may be set (write operations) from any context outside o
analog procedural block

• analog potentials and flows may only receive contributions (write operation
from inside ananalog procedural block

• the semantics of theinitial, always, andanalog procedural blocks remain the same
as in their respective languages

• thediscipline declaration is extended to digital signals

• a new construct,connect statement, is added to facilitate auto-insertion of use
defined connection modules between the analog and digital domains

• when hierarchical connections are of mixed type (i.e. analog signal connecte
digital port or digital signal connected to analog port) then user defined
connection modules are automatically inserted to perform signal value
conversion
Version 1.4 Verilog-AMS Language Reference Manual 1-2
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1.3 Systems

A system is considered to be a collection of interconnectedcomponents that are acted
upon by a stimulus and produce a response. The components themselves might a
systems, in which case a hierarchical system is defined. If a component does not 
any sub-components, then it is considered a primitive component. Each primitive
component connects to one or more nodes. The behavior of each component is d
in terms of signal values at each node.

The components connect to nodes through ports to build hierarchy as shown in
figure 1-2.

Figure 1-2: Components connect to nodes through ports.

In order to simulate systems, it is necessary to have a complete description of the sy
and all of its components. Descriptions of systems are usually given structurally. Th
the description of a system contains instances of components and how they are
interconnected. Descriptions of components are given using behavior and or structu
behavior is a mathematical description that relates the signals at the ports of the
components.

1.3.1 Conservative systems

An important characteristic of conservative systems is that there are two values
associated with every node (and hence every terminal) - the potential (also known a
across value, or the voltage in electrical systems) and the flow (the through value, o
current in electrical systems). The potential of the node is shared with all terminal
connected to the node in such a way that all terminals see the same potential. Th
is shared such that flow from all terminals at a node must sum to zero. In this way
node acts as an infinitesimal point of interconnection in which the potential is the s
everywhere on the node and on which no flow can accumulate. Thus, the node emb
Kirchhoff's Potential and Flow Laws (KPL and KFL). When a component connects
node through a conservative terminal, it may either affect, or be affected by, eithe
potential at the node, and/or the flow onto the node through the terminal.

Module Module

Module

Node

Ports
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With conservative systems it is also useful to define the concept of a branch. A br
is a path of flow between two nodes through a component. Every branch has an
associated potential (the potential difference between the two nodes) and flow.

A behavioral description of a conservative component is constructed as a collectio
interconnected branches. The constitutive equations of the component are formula
to relate the branch potentials and flows. In the probe/source approach, the branc
potential or flow is specified as a function of branch potentials and flows. If the bran
potential and flow are left unspecified, not on the left-hand side of a contribution
statement, then the branch acts as a probe. In this case, if the branch flow is used
expression, the branch potential is forced to zero. Otherwise the branch flow is ass
to be zero and the branch potential is available for use in an expression. Using bo
potential and flow of a 'probe' branch in an expression is not allowed. Nor is specify
both the branch potential and flow at the same time. (While these last two condition
not really necessary, they do eliminate conditions that are useless and confusing.

1.3.1.1 Reference nodes

The potential of a single node is given with respect to a reference node. The potent
the reference node, which is calledground in electrical systems, is always zero.ground
is the global reference node in the circuit. It is compatible with all analog disciplines
is used to bind a terminal of an instantiated module to the refernce node.

1.3.1.2 Reference directions

The reference directions for a generic branch are as follows.

Figure 1-3: Reference directions

The reference direction for a potential is indicated by the plus and minus symbols
each terminal. Given the chosen reference direction, the branch potential is positi
whenever the potential of the terminal marked with a plus sign (A) is larger than th
potential of the terminal marked with a minus sign (B). Similarly, the flow is positiv
whenever it moves in the direction of the arrow (in this case from+  to -).

Verilog-AMS HDL uses associated reference directions. A positive flow enters a bra
through the terminal marked with the plus sign and exits the branch through the term
marked with the minus sign.

A B

flow
+ potential -
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1.3.2 Kirchhoff’s laws

In formulating system equations, Verilog-AMS HDL uses two sets of relationships. T
first are the constitutive relationships that describe the behavior of each compone
Constitutive relationships can be kept inside the simulator as built-in primitives, or t
can be provided by Verilog-AMS HDL module definitions.

The second set of relationships, interconnection relationships, describe the struct
the network. Interconnection relationships, which contain information on how the
components are connected to each other, are only a function of the system topolo
They are independent of the nature of the components.

The Verilog-AMS HDL simulator uses Kirchhoff’s laws to define the relationships
between the nodes and the branches. Kirchhoff’s laws are typically associated wi
electrical circuits that relate voltages and currents. However, by generalizing the
concepts of voltages and currents to potentials and flows, Kirchhoff’s laws can be
to formulate interconnection relationships for any type of system.

Kirchhoff’s laws provide the following properties relating the quantities present on
nodes and branches.

• Kirchhoff's Flow Law (KFL)
The algebraic sum of all flows out of a node at any instant is zero.

• Kirchhoff's Potential Law (KPL)
The algebraic sum of all the branch potentials around a loop at any instant is

.

Figure 1-4: Kirchhoff’s Flow Law (KFL) and Potential Law (KPL)
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KFL KPL

flow1 + flow2 + flow3 = 0
-potential1 -potential2
+potential3 + potential4 = 0
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These laws imply that a node is infinitely small so that there is negligible differenc
potential between any two points on the node and a negligible accumulation of flo

1.3.3 Signal-flow systems

Unlike conservative systems, signal-flow systems only have one potential associa
with every node. As a result, a signal-flow terminal must be unidirectional. It may eit
read the potential of the node, or it may specify it. Signal-flow terminals are either
considered input ports if they pass the potential of the node into a component, or o
ports if they specify the potential of a node.

Signal-flow terminals support a subset of the functionality of conservative terminals
such, one can always use conservative semantics to represent signal-flow compo
There are, however, two important benefits that result from allowing direct descrip
of signal-flow components using signal-flow semantics. First, one only need declare
types of signals that one intends to use. Second, signal-flow semantics require a sm
number of equations and unknowns, and so results in a formulation that is more effi
to simulate.

There are some restrictions that are typically present in signal-flow formulations. F
example,

• Typically, one cannot directly interface signal-flow and conservative
components.

• Typically, signals are potential-like, making it difficult to represent flow-like
signals.

• Typically, components descriptions can only be written in terms ofground-
referred signals, making it difficult to write descriptions of components that u
floating or differential signals.

1.3.4 Mixed conservative/signal flow systems

When practicing the top-down design style, it is extremely useful to mix conservat
and signal-flow components in the same system. Users typically use signal-flow mo
early in the design cycle when the system is described in abstract terms, and grad
convert component models to conservative form as the design progresses. Thus,
important to be able to initially describe a component using a signal-flow model, a
later convert it to a conservative model, with minimum changes. It is also importan
allow conservative and signal-flow components to be arbitrarily mixed in the same
system.

The approach taken is to write component descriptions using conservative seman
except that terminal and node declarations will only require types for those values
are actually used in the description. Thus, signal-flow terminals will only require the t
of one potential to be specified (typically the potential, but could alternatively be th
Version 1.4 Verilog-AMS Language Reference Manual 1-6
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flow), whereas conservative terminals would require types for both values (the pote
and flow). For example, consider a differential voltage amplifier, a differential curr
amplifier, and a resistor. The amplifiers are written using signal-flow terminals and
resistor uses conservative terminals. These examples are meant to illustrate conc
points only, and are not complete descriptions of the model.

In this case, only the voltage on the terminals are declared because only voltage is
in the body of the model.

Here, only current is used in the body of the model, so only current need be declar
the terminals.

module voltage_amplifier (out, in) ;
input  in ;
output out ;
voltage out , // Discipline voltage defined elsewhere

in ; // with access function V()
parameter real GAIN_V = 10.0 ;

analog
V(out) <+ GAIN_V * V(in) ;

endmodule

module current_amplifier (out, in) ;
input  in ;
output out ;
current out , // Discipline current defined elsewhere

in ; // with access function I()
parameter real GAIN_I = 10.0 ;

analog
I(out) <+ GAIN_I * I(in) ;

endmodule
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The description of the resistor relates both the voltage and current on the terminals.
are defined in the conservative disciplineelectrical.

In summary, only those signals types declared on the terminals are accessible in the
of the model. Conversely, only those signals types used in the body need be decl

This approach provides all of the power of the conservative formulation for both sig
flow and conservative terminals, without forcing types to be declared for unused sig
on signal-flow nodes and terminals. In this way, the first benefit of the traditional sig
flow formulation is provided without the restrictions. The second benefit, that of a
smaller, more efficient, set of equations to solve, is provided in a manner that is hid
from the user. The simulator begins by treating all terminals as being conservative
which will allow the connection of signal-flow and conservative terminals. This resu
in additional unnecessary equations for those nodes that only have signal-flow term
This situation can be recognized by the simulator and those equations eliminated

Thus, this approach to allowing mixed conservative/signal-flow descriptions provid
the following benefits:

• Conservative components and signal-flow components can be freely mixed
addition, signal-flow components can be converted to conservative compon
and vice versa, by modifying only the component behavioral description.

• Many of the capabilities of conservative terminals, such as the ability to acc
flow and the ability to access floating potentials, are available with signal-fl
terminals.

• Signal-types only have to be given for potentials and flows if they are acce
in a behavioral description.

• If nodes and terminals are used only in a structural description (only in insta
statements), then no signal-types need be specified.

module resistor (a, b) ;
inout a, b ;
electrical a, b ; // access functions are V() and I()
parameter real R = 1.0 ;

analog
V(a,b) <+ R * I(a,b) ;

endmodule
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1.3.5 Natures, disciplines and nodes

Verilog-AMS HDL allows definition of nodes based on disciplines. The disciplines
associate potential and flow natures for conservative systems or only potential natu
signal-flow systems. The natures are a collection of attributes, including user defin
attributes, that describes the units (meter, gram, newton, etc.), absolute tolerance
convergence, and the names of potential and flow access functions.

The disciplines and natures can be shared by many nodes. The compatibility rule
enforce the legal operations between nodes of different disciplines.

1.4 Conventions used in this document

This document is organized into sections, each of which focuses on some specific
of the language. There are subsections within each section to discuss with individ
constructs and concepts. The discussion begins with an introduction and an optio
rationale for the construct or the concept, followed by syntax and semantic descrip
followed by some examples and notes.

The formal syntax of Verilog HDL is described using Backus-Naur Form (BNF). T
following conventions are used:

1. Lower case words, some containing embedded underscores, are used to d
syntactic categories, for example:

module_declaration

2. Bold face words are used to denote reserved keywords, operators and
punctuation marks as required part of the syntax. For example:

module = ;

3. A vertical bar separates alternative items. For example:

attribute ::=
abstol | units | identifier

4. Square brackets enclose optional items. For example:

input_declaration ::=input  [range]  list_of_ports;

5. Braces enclose a repeated item unless the braces appear in bold face, in w
case it stands for itself. The item may appear zero or more times; the repetit
occur from left to right as with an equivalent left-recursive rule. Thus, the
following two rules are equivalent:

list_of_port_def ::= port_def {, port_def }
Version 1.4 Verilog-AMS Language Reference Manual 1-9
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list_of_port_def ::=
port_def

| list_of_port_def, port_def

6. If the name of any category starts with an italicized part, it is equivalent to 
category name without the italicized part. The italicized part is intended to
convey some semantic information. For example,msb_constant_expression and
lsb_constant_expression are equivalent to constant_expression, and
node_identifier is an identifier that is used to identify (declare or reference) 
node.

The main text usesitalicizedfont when a term is being defined, and constant-width fo
for examples, file names, and while referring to constants.

1.5 Contents

This document contains the following chapters:

1. Verilog-AMS Overview
This section gives the overview of analog modeling, basic concepts, and
describes Kirchhoff’s Potential and Flow Laws.

2. Lexical Conventions
This section lexical tokens used in Verilog-AMS HDL.

3. Data Types
This section describes the data types - integer, real, parameter, nature, disci
and node - as used in Verilog-AMS HDL descriptions.

4. Expressions
This section describes expressions, mathematical functions, and time dom
functions used in Verilog-AMS HDL.

5. Signals
This section describes signals and branches, access to signals and branche
various transformation functions.

6. Analog Behavior
This section describes the basic analog block and procedural language cons
available in Verilog-AMS HDL for behavioral modeling.

7. Mixed-Signal
This section describes the mixed-signal aspects of the Verilog-AMS HDL
language.
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8. Hierarchical Structures
This section describes how to build hierarchical descriptions using Verilog-AM
HDL.

A. Scheduling Semantics
This annex describes the basic simulation cycle as applicable to Verilog-AM
HDL.

B. Open Issues
This annex lists the open issues known to the working group.

C. Analog Language Subset
This annex describes the analog subset of Verilog-AMS HDL.

D. Syntax
This annex describes formal syntax for all Verilog-AMS HDL constructs in
Backus-Naur Form (BNF).

E. Keywords
This annex lists all the words that are recognized in Verilog-AMS HDL as
keywords.

F. System Tasks and Functions
This annex describes all system tasks and functions in Verilog-AMS HDL.

G. Compiler Directives
This annex describes all compiler directives in Verilog-AMS HDL.

H. Standard Definitions
This annex provides definitions of several natures, disciplines and constan
useful writing models in Verilog-AMS HDL.

I. SPICE Compatibility
This annex describes SPICE compatibility with Verilog-AMS HDL.

J. Glossary
This annex describes various terms used in this document.
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Section 2

Lexical Conventions

This section describes the lexical tokens used in Verilog-AMS HDL source text and t
conventions. This section is based on Section 2, Lexical conventions, of IEEE 136
1995. The changes specific to Verilog-AMS can be found in sections 2.5.3 and 2.

2.1 Lexical tokens

A Verilog-AMS HDL source text file is a stream of lexical tokens. Alexical token
consists of one or more characters. The layout of tokens in a source file is free form
that is, spaces and newlines are not syntactically significant other than being toke
separators, except escaped identifiers (Section 2.6.1).

The types of lexical tokens in the language are as follows:

- white space
- comment
- operator
- number
- string
- identifier and keyword

2.2 White space

White space token type contains the characters for spaces, tabs, newlines, and form
These characters are ignored except when they serve to separate other lexical to

2.3 Comments

The Verilog-AMS HDL has two forms to introduce comments. Aone-line comment
starts with the two characters // and ends with a newline.Block comments start with /*
and ends with */. Block comments can not be nested. The one-line comment token //
not have any special meaning in a block comment.
Version 1.4 Verilog-AMS Language Reference Manual 2-1
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Figure 2-1: Syntax for comments

2.4 Operators

Operators are single, double, or triple character sequences and are used in expre
Section 4 discusses the use of operators in expressions.

Unary operators appear to the left of their operand.Binary operators appear between
their operands. Aconditional operator has two operator characters that separate thre
operands.

2.5 Numbers

Constant numberscan be specified as integer constants or real constants. The synta
constants is as shown below:

comment ::=
short_comment

| long_comment

short_comment ::=
// { any_ASCII_characters_except_end_of_line }\n

long_comment ::=
/*  { any_ASCII_characters }*/
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Figure 2-2: Syntax for integer and real constants

2.5.1 Integer constants

Integer constants are specified in decimal format as a sequence of digits 0 through
optionally starting with a plus or minus unary operator. The underscore character (
legal anywhere in a decimal number except as the first character. The underscore
character is ignored. This feature can be used to break up long numbers for reada
purposes.

Examples:

27_195_000 // same as 27195000
-659

2.5.2 Real constants

Thereal constant numbers are represented as described by IEEE STD-754-1985, a
IEEE standard for double precision floating point numbers.

Real numbers can be specified in either decimal notation (for example, 14.72) or 
scientific notation (for example, 39e8, which indicates 39 multiplied by 10 to the 8
power). Real numbers expressed with a decimal point must have at least one digi
each side of the decimal point. The underscore character is legal anywhere in a re

number ::=
decimal_number

| real_number

decimal_number ::=
[ sign ] unsigned_num

real_number ::=
[ sign ] unsigned_num. unsigned_num

| [ sign ] unsigned_num [. unsigned_num ]e [ sign ] unsigned_num
| [ sign ] unsigned_num [. unsigned_num ]E [ sign ] unsigned_num
| [ sign ] unsigned_num [. unsigned_num ] scale_factor

sign ::=
+ | -

unsigned_num ::=
decimal_digit { _ | decimal_digit }

decimal_digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

scale_factor ::=
T | G | M  | K  | k | m | u | n | p | f | a
Version 1.4 Verilog-AMS Language Reference Manual 2-3
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constant except as the first character of the constant or the first character after the
decimal point. The underscore character is ignored.

Examples:

1.2
0.1
2394.26331
1.2E12 // the exponent symbol can be e or E
1.30e-2
0.1e-0
23E10
29E-2
236.123_763_e-12 // underscores are ignored

The following are invalid forms of real numbers because they do not have at least
digit on each side of the decimal point:

.12
9.
4.E3
.2e-7

2.5.3 Scale factors for real constants

The floating-point numbers can be specified with the following letter symbols for th
scale factors indicated. Scale factors and scientific notation are not allowed to be 
together in describing a real number.

Figure 2-3: Symbols used as multipliers to numbers

No space is permitted between the number and the symbol.

This form of floating-point number specification is provided in Verilog-AMS HDL in
addition to the two methods for writing floating-point numbers described earlier.

m = 10-3

T = 1012 u = 10-6

G = 109 n = 10-9

M = 106 p = 10-12

K = 103 ; k = 103 f = 10-15

a = 10-18
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2.6 Identifiers, keywords, and system names

An identifier is used to give an object a unique name so it can be referenced. An iden
can be any sequence of letters, digits, dollar signs ($), and the underscore characte

The first character of an identifier can not be a digit or $; it can be a letter or an
underscore. Identifiers are case sensitive.

Examples:

shiftreg_a
busa_index
error_condition
merge_ab
_bus3
n$657

2.6.1 Escaped identifiers

Escaped identifiers start with the backslash character (\) and end with white space
(space, tab, newline). They provide a means of including any of the printable ASC
characters in an identifier (the decimal values 33 through 126, or 21 through 7E in
hexadecimal).

Neither the leading back-slash character nor the terminating white space is conside
be part of the identifier. Therefore, an escaped identifier \cpu3 is treated the same
non-escaped identifier cpu3.

Examples:

\busa+index
\-clock
\***error-condition***
\net1/\net2
\{a,b}
\a*(b+c)

Short form Expanded form

1.3u 1.3e-6 or 0.0000013

5.46K 5460
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2.6.2 Keywords

Keywords are predefined non-escaped identifiers that are used to define the langu
constructs. Preceding a Verilog-AMS keyword with an escape character causes it
interpreted as an escaped identifier.

All keywords are defined in lowercase only. Annex E gives a list of all defined
keywords.

2.6.2.1 Verilog-AMS Keywords

In addition to the keywords within Verilog-D HDL, the following are additional
keywords used by Verilog-AMS HDL. These additional keywords are used in
declaration of datatypes (Section 3) and in behavioral modeling (Section 6)

Figure 2-4: List of additional keywords

2.6.2.2 Built-in math functions

The following are reserved keywords used by the math library (Section 4.2).

Figure 2-5: List of built-in math functions

abstol continuous enddiscipline generate merged units

access ddt_nature endnature genvar nature using

analog discipline exclude ground potential with

branch discrete flow idt_nature split

connect domain from inf to

abs asin atan2 cos floor log pow sqrt

acos asinh atanh cosh lhypot max sin tan

acosh atan ceil exp ln min sinh tanh
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2.6.2.3 Built-in analog functions

The following are reserved keywords for all built-in analog functions which can be u
in analog blocks (Section 4.4 and Section 6).

Figure 2-6: List of built-in analog functions

2.6.2.4 Built-in analog and mixed-signal functions

The following are reserved keywords for all built-in mixed-signal functions (Sectio
6.7.5).

Figure 2-7: List of built-in mixed-signal functions

2.6.2.5 Built-in driver access functions

The following are reserved keywords for all built-in driver access functions
(Section 7.7).

Figure 2-8: List of built-in driver access functions

2.6.3 System tasks and functions

The$ character introduces a language construct that enables development of use
defined tasks and functions. A name following the$ is interpreted as asystem task or a
system function.

The syntax for a system task or function is as follows:

ac_stim discontinuity initial_step last_crossing white_noise

analysis final_step laplace_nd limexp zi_nd

bound_step flicker_noise laplace_np noise_table zi_np

ddt idt laplace_zd slew zi_zd

delay idtmod laplace_zp transition zi_zp

cross timer

driver_active driver_local driver_state

driver_count driver_next_state driver_strength

driver_delay driver_next_strength
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Figure 2-9: Syntax for system tasks and functions

Annex F lists all the system tasks for Verilog-AMS.

Any valid identifier, including keywords already in use in contexts other than this
construct can be used as a system task or function name.

Examples:

$display ("display a message");
$finish;

2.6.4 Compiler directives

The` character (the ASCII value 60, called open quote or accent grave) introduce
language construct used to implement compiler directives. The compiler behavior
dictated by a compiler directive takes effect as soon as the compiler reads the dire
The directive remains in effect for the rest of the compilation unless a different comp
directive specifies otherwise. A compiler directive in one description file can there
control compilation behavior in multiple description files.

Annex G lists all the compiler directives for Verilog-AMS.

Any valid identifier, including keywords already in use in contexts other than this
construct can be used as a compiler directive name.

Example:

`define wordsize 8

system_task_or_function ::=
$system_task_identifier [ ( list_of_arguments) ] ;

| $system_function_identifier [ ( list_of_arguments) ] ;

list_of_arguments ::=
 argument {, [ argument ] }

argument ::=
expression
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Section 3

Data Types

Verilog-AMS HDL supports integer, real, and parameter data types as found in Ver
HDL. It also modifies the parameter data types and introduces array of real as an
extension of real data type.

Verilog-AMS HDL introduces a new data type, callednode, for representing analog
signals. The nodes havedisciplines that define the natures of potential and flow and
associated attributes. A new datatype calledgenvar has been introduced for use with
behavioral loops.

3.1 Integer and real datatypes

The syntax for declaringinteger andreal is as follows:

Figure 3-1: Syntax for integer and real declarations

An integer declaration declares one or more variables of type integer. These varia
can hold values ranging from -231 to 231-1. Arrays of integers can be declared using 
range that defines the upper and lower indices of the array. Both indices must be con
expressions and must evaluate to a positive integer, a negative integer, or zero.

Arithmetic operations performed on integer variables produce 2’s complement res

integer_declaration ::=
integer  list_of_identifiers;

real_declaration ::=
real list_of_identifiers;

list_of_identifiers ::=
var_name {, var_name }

var_name ::=
variable_identifier

| array_identifier range

range ::=
[upper_limit_constant_expression: lower_limit_constant_expression]
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A real declaration declares one or more variables of type real. The real variables 
stored as 64 bit quantities, as described by IEEE STD-754-1985.

Arrays of real can be declared using a range that defines the upper and lower indic
the array. Both indices must be constant expressions and must evaluate to a posi
integer, a negative integer, or zero.

Both integer and real variables are initialized to zero at the start of a simulation.

Examples:

integer a[1:64]; // an array of 64 integer values
real float ; // a variable to store real value
real gain_factor[1:30] ; // array of 30 gain multipliers

// with floating point values

3.2 Parameters

The syntax for parameter declarations is as follows:
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Figure 3-2: Syntax for parameter declaration

parameter_declaration ::=
parameter [opt_type] list_of_param_assignments;

opt_type ::=
real

| integer

list_of_param_assignments ::=
declarator_init

| list_of_param_assignments, declarator_init

declarator_init ::=
parameter_identifier= constant_expression {opt_value_range}

| parameter_array_identifier = constant_param_arrayinit

parameter_identifier ::=
identifier

parameter_array_identifier ::=
identifier range

opt_value_range ::=
from value_range_specifier

| excludevalue_range_specifier
| excludevalue_constant_expression

value_range_specifier ::=
start_paren expression1: expression2 end_paren

start_paren ::=
[

| (

end_paren ::=
]

| )

expression1 ::=
constant_expression |-inf

expression2 ::=
constant_expression |inf

constant_param_arrayinit ::=
{ param_arrayinit_element_list}

param_arrayinit_element_list ::=
param_arrayinit_element {, param_arrayinit_element }

param_arrayinit_element ::=
constant_expression [ = value_range_specifier ]

| constant_expression{ constant_expression [ = value_range_specifier ]}
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The list of parameter assignments must be a comma-separated list of assignments,
the right hand side of the assignment must be a constant expression, that is, an expr
containing only constant numbers and previously defined parameters. For parame
that are defined as arrays, the initializer must be aconstant_param_arrayinit expression
which is a list of constant expressions containing only constant numbers and previo
defined parameters within ’{’ and ’}’ delimiters.

Parameters represent constants, hence it is illegal to modify their value at runtime
However, parameters can be modified at compilation time to have values that are
different from those specified in the declaration assignment. This allows customiza
of module instances. A parameter can be modified with thedefparam statement, or in
the module instance statement.

By nature, analog behavioral specifications are characterized more extensively in t
of parameters than their digital counterparts. There are three fundamental extensio
the parameter declarations defined in IEEE 1364:

• An optional type for the parameter can be specified in Verilog-AMS HDL. In
IEEE 1364, the type of a parameter defaults to the type of the default expres

• A range of permissible values can be defined for each parameter. In IEEE 1
this check had to be done in user’s model or was left as an implementation
specific detail.

• Parameter arrays of basic integer and real data types.

3.2.1 Type Specification

The parameter declaration can contain an optional type specification. In this sens
parameter keyword acts more as a type qualifier than a type specifier. A default valu
the parameter must be specified.

The following examples illustrate this concept:

parameter real slew_rate= 1e-3;
parameter integer size= 16 ;

If the type of a parameter is not specified, it is derived from the type of the value of
constant expression as in IEEE 1364.

If the type of the parameter is specified, and the value assigned to the parameter co
with the type of the parameter, the value is coerced to the type of the parameter. 
example,

parameter real size= 10 ;

Here,size will be coerced to10.0.
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3.2.2 Value Range Specification

The parameter declaration can contain optional specifications of the permissible r
of the values of a parameter. More than one range may be specified for inclusion 
exclusion of values as legal values for the parameter.

The use of brackets,[ and], indicate inclusion of the end points in the valid range. Th
use of parenthesis,( and), indicate exclusion of the end points from the valid range. It
possible to include one end point and not the other using [ ) and( ]. The first expression
in the range must be numerically smaller than the second expression in the range

For example,

parameter real neg_rail = -15from [ -50:0) ;
parameter integer pos_rail = 15from (0:50) ;
parameter real gain = 1from [ 1:1000] ;

Here, the parameterneg_rail is given a default value of-15and only allowed to acquire
values within the range of-50 <= neg_rail < 0. Similarly, for parameterpos_rail, the default
value is15and it is only allowed to acquire values within the range of0 < pos_rail < 50. For
parametergain, the default value is 1 and it is allowed to acquire values within the ran
of 1<= gain <= 1000.

The keywordinf  may be used to indicate infinity. If preceded by a negative sign, it
indicates negative infinity. For example,

parameter real val3=0from [ 0:inf) exclude (10:20) exclude (30:40];

A single value may be excluded from the possible valid values for a parameter. Fo
example,

parameter real res = 1.0exclude 0 ;

The value of a parameter is checked against the specified range.

3.2.3 Parameter Arrays

The Verilog-AMS HDL specification includes behavioral extensions that utilize arra
It requires that these arrays be initialized in their definitions and allow overriding th
value as with other parameter types. The declaration of arrays of parameters is in
similar manner to those of parameters and register arrays of reals and integers in
Verilog–D HDL.

For example,

parameter real poles[0:3] = { 1.0, 3.198, 4.554, 2.00 };
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3.3 Genvars

Genvars are integer-valued variables that compose static expressions for instanti
structure behaviorally such as accessing analog signals within behavioral looping
constructs. The syntax for declaring genvar variables is as follows:

Figure 3-3: Syntax for genvar declaration

The static nature of genvar variables is derived from the limitations upon the contex
which their values can be assigned. For example:

genvar i;
analog begin

...
for  (i = 0; i < 8; i = i + 1)begin

V(out[i]) <+ transition (value[i], td, tr);
end
...

end

The genvar variable,i, can only be assigned to within the for-loop control. Assignmen
to the genvar variablei can consist only of expressions of static values, e.g., paramet
literals and other genvar variables.

3.4 Nodes

In addition to the data types supported by IEEE 1364, for continuous time simulatio
additional data type,node, is introduced in Verilog-AMS. The fundamental
characteristic of a node data type is that the values of a node are defined by simulta
solution of equations defined by the instances connected to thenode using Kirchhoff’s
conservation laws. In general, a node represents a point of physical connections be
entities of continuous-time description, obeying conservation-law semantics.

A node is characterized by thedisciplineit follows. For example, all low-voltage nodes
have certain common characteristics, all mechanical nodes have certain character
etc. Therefore, a node is always declared as a type of discipline. In this sense, a disc
is a user defined type for declaring a node.

A discipline is characterized by the attributes defined innatures for potential and flow.

genvar_declaration ::=
genvar list_of_genvar_identifiers ;

list_of_genvar_identifiers ::=
genvar_identifier {, genvar_identifier }
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3.4.1 Natures

A nature is a collection of attributes. In Verilog-AMS HDL, there are several pre-
defined attributes. In addition, user-defined attributes may be declared and assign
constant values in a nature.

The nature declarations are at the same level as discipline and module declarations
source text. That is, natures are declared at the top level, and nature declarations
nest inside other nature declarations, discipline declarations, or module declaratio

The syntax for defining a nature is as follows:

Figure 3-4: Syntax for nature declaration

A nature must be defined between the keywordsnature andendnature. Each nature
definition must have a unique identifier as the name of the nature, and must includ
the required attributes as noted in 3.4.1.2.

For example,

nature_declaration ::=
nature nature_name

[ nature_descriptions ]
endnature

nature_name ::=
nature_identifier

| nature_identifier: parent_identifier

parent_identifier ::=
nature_identifier

| discipline_identifier.flow
| discipline_identifier.potential

nature_descriptions ::=
nature_description { nature_description }

nature_description ::=
attribute= constant_expression;

attribute ::=
abstol

| access
| ddt_nature
| idt_nature
| units
| attribute_identifier
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nature current
units = "A" ;
access = I ;
idt_nature = charge ;
abstol = 1u ;

endnature

nature voltage
units = "V" ;
access = V;
abstol = 1u ;

endnature

3.4.1.1 Derived Natures

A nature may be derived from an already declared nature. This allows the new natu
have the same attributes as the attributes for the already declared nature. The new
is called aderived nature, and the existing nature is called aparent nature.If a nature is
not derived from any other nature, then it is called abase nature.

In order to derive a new nature from an existing nature, the new nature name shou
followed by a colon (:) and the name of the parent nature in the nature definition.

A derived nature may declare additional attributes, or override values of the attrib
already declared in the parent nature, with certain restrictions (as outlined in
section 3.4.1.2) for the predefined attributes.

The attributes of the derived nature are accessed in the same manner as accessi
attributes of any other nature.

For example,

nature ttl_curr
units = "A" ;
access = I ;
abstol = 1u ;

endnature

// An alias

nature ttl_node_curr : ttl_curr
endnature

nature new_curr : ttl_curr // derived, but different
abstol = 1m ; // modified for this nature
max = 12.3 ; // new attribute for this nature

endnature

3.4.1.2 Attributes

Attributes define the value of certain quantities that characterize the nature. There
five predefined attributes —abstol, access, idt_nature, ddt_nature, andunits. In
addition, user defined attributes may be defined in a nature.

Attribute declaration assigns a constant expression to the attribute name.
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abstol

Theabstolattribute provides a tolerance measure (metric) for convergence of pote
or flow calculation. It specifies the maximum negligible for signals associated with
nature.

This attribute is required for all base natures. It is legal for a derived nature to chang
abstol attribute but if left unspecified it will inherit the abstol from its parent nature. T
constant expression assigned to it must evaluate to a real value.

access

Theaccessattribute identifies the name for the access function. When the nature is u
to bind potential, the name is used as an access function for the potential; when the n
is used to bind flow, the name is used as an access function for the flow. The usa
access function is described further in section 4.3.

This attribute is required for all base natures. It is illegal for a derived nature to ch
the access attribute; the derived nature always inherits the access attribute of its p
nature. When specified, the constant expression assigned to it must be an identifi
(name, not a string).

idt_nature

The idt_nature attribute provides a relationship between a nature and the nature th
represents its time integral.

The idt_nature is used to reduce the need for users to specified tolerances on theidt()
operator. If this operator is applied directly on nodes, then the tolerance can be ta
from the signal eliminating the need to give a tolerance with the operator.

When specified, the constant expression assigned to an idt_nature attribute must
name (not a string) of a nature that is defined elsewhere. It is possible for a nature
self referring with respect to its idt_nature attribute. In other words, the value of th
idt_nature attribute may be the nature that the attribute itself is associated with.

The idt_nature attribute is optional with its default value being the nature itself. Whi
it is possible to override the parent’s value of the idt_nature attribute using a deriv
nature, the nature specified must be related (share the same base nature) to the n
used for the idt_nature attribute by the parent.

ddt_nature

Theddt_nature attribute provides a relationship between a nature and the nature t
represents its time derivative.

The idt_nature is used to reduce the need for users to specified tolerances on theidt()
operator. If this operator is applied directly on nodes, then the tolerance can be ta
from the signal eliminating the need to give a tolerance with the operator.
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When specified, the constant expression assigned to a ddt_nature attribute must 
name (not a string) of a nature that is defined elsewhere. It is possible for a nature
self referring with respect to its ddt_nature attribute. In other words, the value of th
ddt_nature attribute may be the nature that the attribute itself is associated with.

Theddt_nature attribute is optional with its default value being the nature itself. Whi
it is possible to override the parent’s value of the ddt_nature attribute using a deri
nature, the nature specified must be related (share the same base nature) to the n
used for the ddt_nature attribute by the parent.

units

Theunits attribute provides a binding between the value of the access function and
units for that value.

The units field is provided so that simulators can annotate the signals with their units
is also used in the node compatibiltiy rule check.

This attribute is required for all base natures. It is illegal for a derived nature to defin
change the units attribute; the derived nature always inherits the units attribute of 
parent nature. When specified, the constant expression must be a string.

3.4.1.3 User Defined Attributes

In addition to the predefined attributes listed above, a nature can have other attrib
that may be useful for analog modeling. Typical examples include certain maximum
minimum values to define valid range, etc.

A user defined attribute may be declared in the same manner as any of the prede
attributes. The name of the attribute must be unique in the nature being defined, an
value being assigned to the attribute must be constant.

3.4.2 Disciplines

A discipline description consists of binding natures to potential and flow.

The syntax for declaring a discipline is as follows:
Version 1.4 Verilog-AMS Language Reference Manual 3-10



Nodes Data Types

in the
tions

ntial

to
Figure 3-5: Syntax for discipline declaration

A discipline must be defined between the keywordsdiscipline andenddiscipline. Each
discipline must have a unique identifier as the name of the discipline.

The discipline declarations are at the same level as nature and module declarations
source text. That is, disciplines are declared at the top level, and discipline declara
do not nest inside other discipline declarations, nature declarations, or module
declarations.

3.4.2.1 Nature Binding

Each discipline can bind a nature to its potential and flow.

Only the name of the nature is specified in the discipline. The nature binding for pote
is specified using the keywordpotential. The nature binding for flow is specified using
the keywordflow.

The access function defined in the nature bound to potential is used in the model 
describe the signal-flow that obeys Kirchhoff’s Potential Law (KPL). This access
function is called thepotential access function.

discipline_declaration ::=
discipline discipline_identifier

[ discipline_descriptions ]
enddiscipline

discipline_descriptions ::=
discipline_description { discipline_description }

discipline_description ::=
nature_binding

| domain_binding
| attr_override

nature_binding ::=
pot_or_flownature_identifier;

domain_binding ::=
domain continuous ;

| domain discrete ;

attr_override ::=
pot_or_flow. attribute_identifier= constant_expression;

pot_or_flow ::=
potential

| flow
Version 1.4 Verilog-AMS Language Reference Manual 3-11
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The access function defined in the nature bound to flow is used in the model to des
the signal-flow that obeys Kirchhoff’s Flow Law (KFL). This access function is call
theflow access function.

Disciplines with two natures are called conservative disciplines, and the nodes
associated with conservative disciplines are called conservative nodes. Conserva
disciplines must not have the same nature specified for both the potential and the
Disciplines with a single potential nature are called as signal-flow disciplines, and 
nodes with signal-flow disciplines are called signal-flow nodes. Only the potential na
is allowed to be specified for a signal-flow discipline.

Example:

Conservative discipline:

discipline electrical
potential Voltage ;
flow Current ;

enddiscipline

Signal-flow disciplines:

discipline voltage
potential Voltage ;

enddiscipline

discipline current
potential Current;

enddiscipline

3.4.2.2 Domain Binding

Analog signal values are represented in continuous time whereas digital signal value
represented in discrete time. The domain attribute of the discipline stores this pro
of the signal.

It takes two possible values -discrete andcontinuous.Signals with continuous-time
domain are real valued. Signals with discrete-time domain may either be binary (0,
or Z), integer or real valued.

For example,

discipline electrical
domain continuous;
potential Voltage;
flow Current;

enddiscipline

discipline logic
domain discrete;

enddiscipline

This attribute is optional. The default value for domain iscontinuousfor non-empty
disciplines.
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3.4.2.3 Empty Disciplines

It is possible to define a discipline with no nature bindings and it has no domain. Th
are known as empty disciplines, and may be used in structural descriptions when
wish to let the components connected to a node determine which natures are to be
for the node.

Example:

discipline neutral
enddiscipline

discipline interconnect
domain continuous;

enddiscipline

3.4.2.4 Overriding Nature Attributes from Discipline

A discipline can override the value of the bound nature for the pre-defined attribut
(except as restricted by section 3.4.1.2), as shown for the flowttl_curr in the example
below. To do so from a discipline declaration, the bound nature and attribute mus
defined, as shown below for theabstol value within the disciplinettl in the following
example. The general form is: the keywordflow orpotential, then the hierachical separato
., then the attribute name, and set all of this equal to (=) the new value (e.g.,flow.abstol =
10u).

nature ttl_curr
units = "A" ;
access = I ;
abstol = 1u ;

endnature

nature ttl_volt
units = "V" ;
access = V;
abstol = 100u ;

endnature

discipline ttl
potential ttl_volt ;
flow ttl_curr ;
flow.abstol = 10u ;

enddiscipline

3.4.2.5 Deriving Natures from Disciplines

A nature may be derived from the nature bound to potential or flow in a discipline. T
allows the new nature to have the same attributes as the attributes for the nature 
to the flow or the potential of the discipline.

If the nature binding to the flow or the potential of a discipline changes, the new na
will automatically inherit the attributes for the changed nature.
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In order to derive a new nature from flow or potential of a discipline, the nature
declaration shall also include the discipline name followed by the hierarchical sepa
. and the keywordflow or potential, as shown forttl_node_curr in the example below.

A nature derived from the flow or potential of a discipline may declare additional
attributes, or override values of the attributes already declared.

For example,

nature ttl_node_curr: ttl.flow // from the example in section 3.4.2.4
endnature // abstol = 10u as modified in ttl

nature ttl_node_volt: ttl.potential // from the example in section 3.4.2.4
abstol = 1m ; // modified for this nature
max = 12.3 ; // new attribute for this nature

endnature

3.4.3 Node Declaration

Each node declaration is associated with an already declared discipline. The follo
syntax is used for declaring nodes:

Figure 3-6: Syntax for node declaration

If a range is specified for a node, the node is called a vector node; otherwise it is c
a scalar node. A vector node is also called an analog bus.

Examples:

node_declaration ::=
discipline_identifier [range] list_of_nodes;

range ::=
[ msb_expression: lsb_expression]

list_of_nodes ::=
node_name

| node_name, list_of_nodes

node_name ::=
node_identifier

| hierarchical_node_identifier

msb_expression ::=
constant_expression

lsb_expression ::=
constant_expression
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electrical [MSB:LSB] n1 ; // MSB and LSB are parameters
voltage [5:0] n2, n3 ;
magnetic inductor ;
logic [10:1] connector1 ;

Nodes represent the abstraction of information about signals. As terminals (ports 
module declared as nodes), nodes represent component interconnections. Nodes
declared in the module interface define the terminals to the module (See section 8

A node used for modeling a conservative system must have the discipline with bo
access functions (potential and flow) defined. For modeling a signal-flow system, 
discipline of a node can have only one access function.

Nodes declared with an empty discipline do not have declared natures, so such n
cannot be used in a behavioral description (because the access functions are not kn
However, such nodes can be used in structural descriptions, where they inherit th
natures from the ports of the instances of modules that connect to them.

3.4.4 Implicit Nodes

Nodes can be used in a structural descriptions without being declared. In this cas
node is implicitly declared to be a scalar node with the empty discipline.The groun
node, as described in section 1.3.1.1, is a special implicit node which allows conne
to the global reference. Implicit nodes cannot appear in behavioral descriptions. F
example:

module top(i1, i2, o1, o2, o3);
input  i1, i2;
output o1, o2, o3;
electrical i1, i2, o1, o2, o3;

// ab1, ab2, cb1, cb2 are implicit nodes, not declared
blk_a a1( i1, ab1 );
blk_a a2( i2, ab2 );
blk_b b1( ab1, cb1 );
blk_b b2( ab2, cb2 );
blk_c c1( o1, o2, o3, cb1, cb2);

endmodule

3.5 Default Discipline

Verilog-AMS supports the‘default_disciplinecompiler directive. This directive specifies a
default discipline to be applied to any signal that does not have an explicit discipli
declaration.
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It has the following syntax:

Figure 3-7: Syntax for setting default discipline compiler directive

The scope of this directive is similar to the scope of the‘define compiler directive. The
default discipline is applied to all signals without a discipline declaration that appea
the text stream following the use of the‘default_discipline directive until either the end
of the text stream or until another‘default_discipline directive with the same
combination of qualifier and scope (if applicable) is found in the subsequent text.
Therefore, more than one‘default_discipline directives can be in force simultaneously,
provide they differ in scope or qualifier or both.

If this directive is used without a discipline name, it turns off all currently active defa
disciplines without setting a new default discipline. The subsequent signals withou
discipline will be associated with the empty discipline.

For example,

‘default_discipline logic

modulebehavnand(in1, in2, out);
input  in1, in2;
output out;
reg out;

always begin
out = ~(in1 && in2);

end

endmodule

This example illustrates the usage of the‘default_discipline directive. The signalsin1,

in2 and outall have disciplinelogic by default.

There is a precedence of such compiler directives. The more specific directives h
higher precedence over the general directives.

default_discipline_directive ::=
‘default_discipline [discipline_identifier [qualifier] [scope]]

qualifier ::=
integer | real | reg |
wire | tri  | wand | triand   |wor | trior | trireg |
tri0  | tri1  | supply0 | supply1

scope ::= module_identifier
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3.5.1 Discipline Precedence

While a net itself may be declared only in the module to which it belongs, the discip
of the net may be specified in a number of ways. The discipline name may appear i
declaration of the net. The discipline name may be used in a declaration which mak
out of context reference to the net from another module. The discipline name may
used in a‘default discipline compiler directive. Discipline conflicts may arise if more
than one of these methods is applied to the same net. Discipline conflicts will be reso
using the following order of precedence:

1. A declaration from a module other than the module to which the net belong
using an out of module reference. e.g.

module example1;
electrical example2.net;

endmodule

2. The local declaration of the net in the module to which it belongs. e.g.

module example2;
electrical net;

endmodule

3. ‘default_discipline with qualifier and scope e.g.‘default_discipline electrical
trireg example1.instance5

4. ‘default_discipline with scope only e.g.‘default_discipline electrical
example1.instance5

5. ‘default_discipline with qualifier only e.g.‘default_discipline electrical trireg

6. ‘default discipline without qualifier or scope e.g.‘default_discipline electrical

It is not legal to have two different disciplines with the same level of precedence for
same net.

3.6 Node Compatibility

Certain operations can be done on nodes only if the two (or more) nodes are compa
For example, if an access function has two nodes as arguments, they must be comp
The nodes are considered compatible if their respective disciplines are compatible
following rules apply in deciding whether two disciplines are compatible:

Self Rule: A discipline is compatible with itself.

Potential Compatibility Rule: If the natures of the two potential are compatible, and th
natures of the two flows are not incompatible then the two disciplines are conside
compatible.
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Flow Compatibility Rule: If the natures of the two flows are compatible, and the natur
of the two potential are not incompatible then the two disciplines are considered
compatible.

Nature Compatibility Rule: Two natures are compatible if they both exist and are deriv
from the same base nature.

Nature Incompatibility Rule: Two natures are not incompatible if they are compatible
if one or both do not exist.

Units Value Rule: All compatible natures must have the same value for the attribute
units. Since a child nature cannot override a base nature’s unit, this rule is always
maintained.

Empty Discipline Rule: An empty discipline is compatible with all disciplines.

Discrete Domain Rule: Disciplines withdiscrete domain attribute that are of the same
signal value (i.e. bit, real, integer) are compatible with each other.

Domain Incompatibility Rule: Disciplines with different domain attributes are
incompatible with each other.

Node Connection Rule: It is an error to connect two ports with incompatible discipline
unless there is aconnect statement (section 7.4) defined between these disciplines.

The following example illustrates these rules:
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The following compatibility observations can be made from the above example:

• electricalandlogic are compatible disciplines because natures for both poten
and flow exist and are derived from the same base natures.

• electricalandsig_flow_vare compatible disciplines because nature for potent
is same for both disciplines and nature for flow does not exist insig_flow_v.

• electrical andsig_flow_i are compatible disciplines because nature for flow i
same for both disciplines and nature for potential does not exist insig_flow_i.

• electricalandmechanicalare incompatible disciplines because natures for bo
potential and flow are not derived from the same base natures.

• electrical andsig_flow_x are incompatible disciplines because nature for bot
potential are not derived from the same base nature.

• sig_flow_v andsig_flow_i are compatible disciplines as well assig_flow_v and
sig_flow_f are compatible disciplines because the natures do not conflict (t
potential natures do not conflict because onlysig_flow_vhas a potential nature,

nature voltage
access = V;
units = "V";
abstol = 1u;

endnature

nature current
access = I;
units = "A";
abstol = 1p;

endnature

discipline electrical
potential voltage;
flow current;

enddiscipline

discipline logic : electrical
potential.abstol=1m;

enddiscipline

discipline sig_flow_v
potential voltage;

enddiscipline

discipline sig_flow_i
flow current;

enddiscipline

nature position
access = X;
units = "m";
abstol = 1u;

endnature

nature force
access = F;
units = "N";
abstol = 1n;

endnature

discipline mechanical
potential position;
flow force;

enddiscipline

discipline sig_flow_x
potential position;

enddiscipline

discipline sig_flow_f
flow force;

enddiscipline

discipline empty
enddiscipline
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and the flow natures do not conflict becausesig_flow_v does not have a flow
nature)

• An empty discipline is compatible with all other disciplines because it has neit
a potential nor a flow nature. Without natures, there can be no conflicting natu

3.7 Branches

A branch is a path between two nodes. If both nodes are conservative, then the bra
a conservative branch and it defines a branch potential and a branch flow. If one no
a signal-flow node, then the branch is a signal-flow branch and it defines either a br
potential or a branch flow, but not both.

3.7.1 Branch Declaration

Each branch declaration is associated with two nodes from which it derives a discip
These nodes are referred to as the branch terminals. Only one node need be speci
which case the second is taken to beground and the discipline for the branch is taken from
the specified node. The disciplines for the nodes specified must be compatible (se
section 3.6).

The following syntax is used for declaring branches:

Figure 3-8: Syntax for branch declaration

If one of the terminals of a branch is a vector node, then the other terminal must e
be a scalar or it must be a vector node of the same size. In this case, the branch is re
to as being a vector branch. When both terminals are vectors, the scalar branche
make up the vector branch connect between the corresponding scalar nodes that m
the vector terminals

branch_declaration ::=
branch list_of_branches;

list_of_branches ::=
terminals list_of_branch_identifiers

terminals ::=
( node_or_port_scalar_expression)

| ( node_or_port_scalar_expression, node_or_port_scalar_expression)

list_of_branch_identifiers ::=
branch_identifier [ range ]

| branch_identifier [ range ], list_of_branch_identifiers
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When one terminal is a vector and the other is a scalar, there is one scalar branch
connecting to each scalar node in the vector terminal, and the other terminal of ea
branch connects to the scalar terminal

.

3.7.2 Accessing Node and Branch Signals

Signals on nodes and branches can be accessed only by the access functions of 
discipline associated with them. The name of the node or the branch must be spe
as the argument to the access function.

For example,

electrical out, in ; // as defined in Section 3.4.2.1
parameter real gm = 1 ;

analog
I(out) <+ gm*V(in) ;

electrical p, n;
branch (p,n) res;
parameter real R = 50;

analog
V(res)<+ R*I(res);

The formal syntax for referencing access functions is as follows:

Vector Branch

Vector TerminalVector Terminal

Vector Branch

Scalar TerminalVector Terminal
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Figure 3-9: Syntax for referencing access functions of a node

3.7.3 Accessing Attributes

The attributes are attached to the nature of potential or flow. Therefore, the attribute
a node or a branch can be accessed using the hierarchical referencing operator (.)
potential or flow for the node or the branch.

For example,

electrical a, b, n1, n2;
branch (n1, n2) cap ;
parameter real c= 1p;

analog begin
I(a,b)<+ c*ddt(V(a,b), a.potential.abstol);
I(cap)<+ c*ddt(V(cap), n1.potential.abstol) ;

end

The formal syntax for referencing access attributes is as follows:

Figure 3-10: Syntax for referencing attributes of a node

access_function_reference ::=
bvalue

| pvalue
bvalue ::=

access_identifier( analog_signal_list)
analog_signal_list ::=

branch_identifier
| array_branch_identifier [ genvar_expression ]
| node_or_port_scalar_expression
| node_or_port_scalar_identifier ,node_or_port_scalar_identifier

node_or_port_scalar_expression ::=
node_or_port_identifier

| array_node_or_port_identifier [ genvar_expression ]
| buss_node_or_port_identifier [ genvar_expression ]

pvalue ::=
flow_access_identifier( < port_scalar_expression> )

port_scalar_expression ::=
port_identifier

| array_port_identifier [ genvar_expression ]
| buss_port_identifier [ genvar_expression ]

attribute_reference ::=
node_identifier. pot_or_flow. attribute_identifier
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3.8 Namespace

3.8.1 Nature and Discipline

The natures and disciplines are defined at the same level of scope as that of mod
Thus, identifiers defined as natures or disciplines have the global scope, and allow
declaration of nodes inside any module in the same manner as an instance of a m

3.8.2 Access Functions

Each access function name, defined before a module is parsed, is automatically ad
that module’s name space unless there is another identifier defined with same na
the access function in that module’s name space. Furthermore the access function o
base nature must be unique for all the base nature access functions.

3.8.3 Node

The scope rules for node identifiers are the same as the scope rules for any other
identifier declarations with one exception - nodes may not be declared anywhere 
than the port of a module or in the module itself. In other words, a node may not b
declared inside any block (named or unnamed) other than a module; there is no lo
declaration for a node.

All access functions are always uniquely defined for each node based on the disc
of the node. Each access function is always used with the name of the node as its
argument, and a node is always accessed only through its access functions.

The hierarchical reference character (.) may be used to reference a node across t
module boundary using the rules specified in IEEE 1364.

3.8.4 Branch

The scope rules for branch identifiers are the same as the scope rules for node iden
In other words, branches are declared inside modules but may not be declared insid
block (named or unnamed) other than a module; there is no local declaration for a br

The access functions are always uniquely defined for each branch based on the disc
of the branch. The access function is always used with the name of the branch as
argument, and a branch is always accessed only through its access functions.

The hierarchical reference character (.) may be used to reference a node across t
module boundary using the rules specified in IEEE 1364.
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Section 4

Expressions

This section describes the operators and operands available in the Verilog-AMS H
and how to use them to form expressions.

An expressionis a construct that combinesoperandswith operatorsto produce a result
that is a function of the values of the operands and the semantic meaning of the ope
Any legal operand, such as an integer or an indexed element from an array of rea
without any operator is also considered an expression. Wherever a value is neede
Verilog-AMS HDL statement, an expression can be used.

Some statement constructs require an expression to be aconstant expression. The
operands of a constant expression consists of constant numbers and parameter n
but can use any of the operators defined in Table 4-1.

4.1 Operators

The symbols for the Verilog-AMS HDL operators are similar to those in the C
programming language. Table 4-1 lists these operators.

Table 4-1 : Operators

{}, {{}} concatenation, replication

+ - * / arithmetic

% modulus

> >= < <= relational

! logical negation

&& logical and

|| logical or

== logical equality

!= logical inequality

~ bit-wise negation

& bit-wise and

| bit-wise inclusive or

^ bit-wise exclusive or
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4.1.1 Operators with real operands

The operators shown in Table 4-2 are legal when applied to real operands. All oth
operators are considered illegal when used with real operands.

The result of using logical or relational operators on real numbers is an integer va
(false) or 1 (true).

Table 4-2 lists operators that can not be used to operate on real numbers.

4.1.1.1 Real To Integer Conversion

Real numbers are converted to integers by rounding the real number to the neare
integer, rather than by truncating it. Implicit conversion takes place when a real num
is assigned to an integer. The ties are rounded away from zero.

Examples:

The real numbers 35.7 and 35.5 both become 36 when
converted to an integer and 35.2 becomes 35.

Converting -1.5 to integer yields -2, converting 1.5 to
integer yields 2.

^~ or ~^ bit-wise equivalence

<< left shift

>> right shift

? : conditional

or event or

Table 4-2 : Legal operators for use in real expressions

{}, {{}} concatenation and replication operator

unary + unary - unary operators

+   -    *   / arithmetic

>   >=   <   <= relational

!    &&  || logical

==        != logical equality

?: conditional

Table 4-3 : Operators not allowed for real expressions

% modulus

<< >> shift

Table 4-1 : Operators
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4.1.1.2 Arithmetic Conversion

For operands, a common data type for each operand is determined before the oper
applied. If either operand is real, the other operand is converted to real. Implicit
conversion takes place when a integer number is used with a real number in an op

Examples:

a = 3 + 5.0;
// The expression "3 + 5.0" is evaluated by "casting" the
// integer 3 to the real 3.0, and the result of the expression is 8.0.

b = 1 / 2;
// The above is integer division and the result is 0.

c = 8.0 + (1/2);
// (1/2) is treated as integer division, but the result is cast to a
// real (0.0) during the addition, and the result of the expression is 8.0.

4.1.2 Binary operator precedence

The precedence order ofbinary operators and theconditional operator (?:) is shown
below in Table 4-4.

Operators shown on the same row in Table 4-4 have the same precedence. Rows
arranged in order of decreasing precedence for the operators. For example,*, /, and% all
have the same precedence, which is higher than that of the binary + and- operators.

All operators associate left to right with the exception of the conditional operator wh
associate right to left. Associativity refers to the order in which the operators having

Table 4-4 : Precedence rules for operators

+ - ! ~ (unary) highest precedence

* / %

+ - (binary)

 << >>

 < <= > >=

== !=

& ~&

^ ^~ ~^

| ~|

&&

||

?: (conditional operator) lowest precedence
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same precedence are evaluated. Thus, in the following exampleB is added toA and then
C is subtracted from the result ofA+B.

A + B - C

When operators differ in precedence, the operators with higher precedence assoc
first. In the following example,B is divided byC (division has higher precedence than
addition) and then the result is added toA.

A + B / C

Parentheses can be used to change the operator precedence.

(A + B) / C // not the same as A + B / C

4.1.3 Expression evaluation order

The operators follow the associativity rules while evaluating an expression as desc
in section 4.1.2. However, if the final result of an expression can be determined e
the entire expression need not be evaluated. This is calledshort-circuitingan expression
evaluation.

integer A, B, C, result ;
result = A & (B | C) ;

If A is known to be zero, the result of the expression can be determined as zero wi
evaluating the sub-expressionB | C.

4.1.4 Arithmetic operators

The binary arithmetic operators are the following:

The integer division truncates any fractional part toward zero. The modulus operato
exampley % z, gives the remainder when the first operand is divided by the second,
thus is zero whenz dividesy exactly. The result of a modulus operation takes the sign
the first operand.

For the case of the modulus operator in which either argument is real, the operati
performed is:

a % b = a - floor(a/b)*b;

Table 4-5 : Arithmetic operators defined

a + b a plus b

a – b a minus b

a * b a multiply by b

a / b a divide by b

a % b a modulo b
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The unary arithmetic operators take precedence over the binary operators. The u
operators are the following:

Table 4-7 gives examples of modulus operations.

4.1.5 Relational operators

Table 4-8 lists and defines the relational operators

An expression using theserelational operatorsyields the value0 if the specified relation
is false, or the value1 if it is true.

All the relational operators have the same precedence. Relational operators have
precedence than arithmetic operators.

The following examples illustrate the implications of this precedence rule:

a < foo - 1 // this expression is the same as
a < (foo - 1) // this expression, but . . .
foo - (1 < a) // this one is not the same as
foo - 1 < a // this expression

Table 4-6 : Unary operators defined

+m unary plus m (same as m)

-m unary minus m

Table 4-7 : Examples of modulus operations

Modulus Expression Result Comments

10 % 3 1 10/3 yields a remainder of 1

11 % 3 2 11/3 yields a remainder of 2

12 % 3 0 12/3 yields no remainder

-10 % 3 -1 the result takes the sign of the first operand

11 % -3 2 the result takes the sign of the first operand

10 % 3.75 2.5 [10 - floor(10/3.75)*3.75 ] yields a remainder of 2.5

Table 4-8 : The relational operators defined

a < b a less than b

a > b a greater than b

a <= b a less than or equal to b

a >= b a greater than or equal to b
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Whenfoo - (1 < a)evaluates, the relational expression evaluates first and then either
or one is subtracted fromfoo. Whenfoo - 1 < a evaluates, the value offoo operand is
reduced by one and then compared witha.

4.1.6 Equality operators

Theequality operators rank lower in precedence than the relational operators. Tabl
9 lists and defines the equality operators.

Both equality operators have the same precedence. These operators compare the
of the operands. As with the relational operators, the result will be0 if comparison fails,
1 if it succeeds.

4.1.7 Logical operators

The operatorslogical and (&& ) andlogical or (||) are logical connectives. The result o
the evaluation of a logical comparison can be1 (defined astrue), or 0 (defined asfalse).
The precedence of&& is greater than that of||, and both are lower than relational and
equality operators.

A third logical operator is the unarylogical negation operator!. The negation operator
converts a non-zero or true operand into 0 and a zero or false operand into 1.

The following expression performs a logical and of three sub-expressions without
needing any parentheses:

a < param1 && b != c && index != lastone

However, it is recommended for readability purposes that parentheses be used to
very clearly the precedence intended, as in the following rewrite of the above exa

(a < param1) && (b != c) && (index != lastone)

4.1.8 Bit-wise operators

Thebit-wise operators perform bit-wise manipulations on the operands—that is, the
operator combines a bit in one operand with its corresponding bit in the other opera
calculate one bit for the result. The logic tables below show the results for each pos
calculation.

Table 4-9 : The equality operators defined

a == b a equal to b,

a != b a not equal to b,
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4.1.9 Shift operators

Theshift operators, << and>>, perform left and right shifts of their left operand by the
number of bit positions given by the right operand. Both shift operators fill the vac
bit positions with zeroes. The right operand is always treated as an unsigned num

Table 4-14 : Bit-wise unary negation operator

~

0
1

1
0

Table 4-10 : Bit-wise binary and
operator

& 0 1

0
0 0

1
0 1

Table 4-11 : Bit-wise binary or
operator

| 0 1

0
0 1

1
1 1

Table 4-12 : Bit-wise binary exclusive
or operator

^ 0 1

0
0 1

1
1 0

Table 4-13 : Bit-wise binary exclusive
nor operator

^~

~^
0 1

0
1 0

1
0 1
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integer start, result;
analog begin

start = 1;
result = (start << 2);

end

In this example, the register result is assigned the binary value 0100, which is 000
shifted to the left two positions and zero filled.

4.1.10 Conditional operator

Theconditional operator, also known asternary operator, is right associative and must
be constructed using three operands separated by two operators with the followin
syntax:

Figure 4-1: Syntax for conditional operator

The evaluation of a conditional operator begins with the evaluation of expression1
expression1 evaluates to false (0), then expression3 is evaluated and used as the r
the conditional expression. If expression1 evaluates to true (value other than 0), t
expression2 is evaluated and used as the result.

4.1.11 Event or

The eventor operator performs an or of events. See section 6.7.2 for events and
triggering of events.

4.1.12 Concatenations

A concatenation is used for joining scalar elements into compound elements (bus
arrays) for the built-in types ofinteger or real or elements declared of type node. The
concatenation shall be expressed using the brace characters{ and}, with commas
separating the expressions within.

Example:

conditional_expression ::=
expression1? expression2: expression3
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module x;
parameter real p1[0:2] = { 1.0, 2.0, 3.0 };
...

endmodule

module y;
parameter real pole1 = 0, pole2 = 0, pole3 = 0;
x #(.p1({pole1, pole2, pole3}) x1;
...

endmodule

Modulex defines a real-array parameterp1. Moduley instantiatesx and overrides the
array value of the parameterp1of modulex via the concatenation of the scalar paramete
pole1, pole2, andpole3.

Concatenations can be expressed using a replication multiplier as shown in the follo
example:

{c, {2{a, b}}} // equivalent to: {c, a, b, a, b}

The replication multiplier must be a constant expression.

4.2 Built-In Mathematical Functions

Verilog-AMS HDL supports the following standard mathematical functions.

4.2.1 Standard Mathematical Functions

These are the standard mathematical functions supported by Verilog-AMS HDL. T
operands must be numeric (integer or real). Formin(), max(), andabs(), if either
operand is real, both are converted to real, as is the result. All other arguments ar
converted to real.

Function Description Domain

ln(x) Natural logarithm x > 0

log(x) Decimal logarithm x > 0

exp(x) Exponential x < 80

sqrt(x) Square root x ≥ 0

min(x, y) Minimum All x, all y

max(x, y) Maximum All x, all y

abs(x) Absolute Allx
Version 1.4 Verilog-AMS Language Reference Manual 4-9
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The min(), max(), and abs() functions have discontinuous derivatives, and it is nece
to define the behavior of the derivative of these functions at the point of the
discontinuity. In that context, these functions are defined such that

min(x,y) is equivalent to (x < y) ?x : y

max(x,y) is equivalent to (x > y) ?x : y

abs(x) is equivalent to (x > 0) x : –x

4.2.2 Transcendental Functions

These are the trigonometric and hyperbolic functions supported by Verilog-AMS HD
All operands must be of the numeric type (integer or real) and are converted to real if
necessary.

All arguments to the trigonometric and hyperbolic functions are specified in radian

pow(x, y) Power.xy if x >= 0, all y;
if x < 0, int(y)

floor (x) Floor All x

ceil(x) Ceiling All x

Function Description Domain

sin(x) Sine All x

cos(x) Cosine Allx

tan(x) Tangent ,n is odd

asin(x) Arc-sine

acos(x) Arc-cosine

atan(x) Arc-tangent Allx

atan2(x,y) Arc-tangent ofx/y All x, All  y

hypot(x,y) All x, All  y

sinh(x) Hyperbolic sine x < 80

cosh(x) Hyperbolic cosine x < 80

tanh(x) Hyperbolic tangent Allx

Function Description Domain

x n
π
2
--- 

 ≠

1 x 1≤ ≤–

1 x 1≤ ≤–

x
2

y
2

+
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4.2.3 Error Handling

All math functions not defined for any input must report an error.

4.3 Signal Access Functions

Access functions are used to access signals on nodes, ports, and branches. There
types of access functions -signal access functionsandport access functions. The name
of the access function for a signal is taken from the discipline of the node, port, or bra
to which the signal or port is associated and utilizes the function "()"  operator. A port
access function also takes its name from the discipline of the port to which it is assoc
but utilizes the port access "(<>)" operator. If the signal or port access function is used
an expression, the access function returns the value of the signal. If the signal acc
function is being used on the left side of a branch assignment or contribution statem
it assigns a value to the signal. A port access function cannot be used on the left si
a branch assignment or contribution statement.

The following table shows how access functions can be applied to branches, nodes
ports. In this table,b1 refers to a branch,n1 andn2 represent either nodes or ports, an
p1 represents a port. These branches, nodes, and ports are assumed to belong to
electrical discipline where V is the name of the access function for the voltage
(potential), and I is the name of the access function for the current (flow).

asinh(x) Arc-hyperbolic sine Allx

acosh(x) Arc-hyperbolic cosine

atanh(x) Arc-hyperbolic tangent

Example Comments

V(b1) Accesses the voltage across branchb1

V(n1) Accesses the voltage ofn1 (a node or a port) relative to ground

V(n1,n2) Accesses the voltage difference betweenn1 andn2 (nodes or ports)

V(p1,p1) Error

I(b1) Accesses the current on branchb1

I(n1) Accesses the current flowing fromn1 (a node or port) to ground

I(n1, n2) Accesses the current flowing betweenn1 andn2

Function Description Domain

x 1≥

1 x 1≤ ≤–
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The argument expression list for signal access functions must be a branch identif
a list of one or two node or terminal expressions. If two node expressions are give
arguments to an access function, they must not be the same expressions.The nod
identifiers must be scalar or resolve to a constant node of a composite node type 
or bus) accessed by a constant expression. The operands of an expression must be
to define a valid branch. The access function name must match the discipline declar
for the nodes, ports, or branch given in the argument expression list. In this case, V
I were used as examples of access functions for electrical potential and flow.

For port access functions, the expression list is a single port of the module. The p
identifier must be scalar or resolve to a constant node of a bus port accessed by a co
expression. The access function name must match the discipline declaration for the
identifier.

4.4 Analog Operators

Analog operators are functions that operate on more than just the current value o
arguments. Rather, they maintain internal state and their output is a function of bot
input and the internal state.

Analog operators operate on an expression and return a value.

Analog operators are also referred to as filters. They include the time derivative, t
integral, and delay operators from calculus. They also include the transition and s
filters, that are used to remove discontinuity from piecewise constant and piecewi
continuous waveforms. Finally they include more traditional filters, such as those
described with Laplace and Z-transform descriptions.

One special analog operator is thelimexp() function, which is a version of theexp()
function with built-in limits that improves convergence.

4.4.1 Restrictions on analog operators

Analog operators are subject to several important restrictions because they maint
internal state.

• Analog operators must not be used inside conditional statements (if andcase) and
looping (for andgenerate) unless the conditional expression that controls the
statement consists of terms that cannot change their value during the course
analysis. In particular, the conditional expression can only consist of literal

I(p1, p1) Error

I(<p1>) Accesses the current flow into the module through portp1

Example Comments
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numerical constants, genvar variables, parameter values, and theanalysis()
function.

• Analog operators are not allowed in therepeat andwhile loop statements.

• Analog operators can only be used inside ananalogblock; can not be used inside
aninitial or analwaysblock. They cannot be used inside a user defined functio

• It is illegal to specify a null argument in the argument list of an analog oper

These restrictions are present to prevent use that would cause the internal state t
corrupted or become out-of-date, which results in anomalous behavior.

4.4.2 Vector or Array Arguments to Analog Operators

Certain analog operators require passing of arrays or vectors as parameters (Lapla
Z transform filters, andnoise_table). The array can be passed as either:

• array_identifier

• const_array_expression

Theconst_array_expression allows the arrays to be passed within the argument list
without explicit declaration of the array object.

The syntax is as follows:

Figure 4-2: Syntax for constant array expression

4.4.3 Analog Operators and Equations

Generally, simulators formulate the mathematical description of the system in term
first-order differential equations and solve them numerically. There is no direct wa
solve a set of nonlinear differential equations so iterative approaches are used. W
using iterative approaches, one must have criteria used to determine when the algo
is close enough to the solution to stop the iteration. Tolerances are used for this pur
Thus, each equation, at minimum, must have a tolerance defined and associated w

constant_array_expression ::=
{ constant_arrayinit_element_list}

constant_arrayinit_element_list
| constant_arrayinit_element {, constant_arrayinit_element }

constant_arrayinit_element ::=
| constant_expression
| integer_constant_expression{ constant_expression}
Version 1.4 Verilog-AMS Language Reference Manual 4-13
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Occasionally, analog operators require that new equations and new unknowns be
introduced by the simulator to convert a module description into a set of first-orde
differential equations. In this case, the simulator will attempt to determine from con
which tolerance should be associated with the new equation and new unknown.
Alternatively, these operators allow tolerances to be specified.

Specifying natures directly enforces reusability and allows other signal attributes t
accessed by the simulator.

4.4.4 Time Derivative Operator

Theddt operator computes the time derivative of its argument.

In DC analysis,ddt() returns zero. The optional parameterabstolis used as an absolute
tolerance if needed. Whether an absolute tolerance is needed depends on the co
whichddt is used. See section 4.4.3 for more information on the application of
tolerances to equations. The absolute tolerance,abstolor derived fromnature, applies to
the output of theddt operator, and is the largest signal level that is considered negligi

4.4.5 Time Integral Operator

The idt operator computes the time-integral of its argument.

Operator Example Comments

ddt ddt(x) Returns , the time-derivative ofx

ddt(x, abstol) Same as above, except absolute
tolerance is specified explicitly.

ddt(x, nature) Same as above, except nature is
specified explicitly.

Operator Example Comments

idt idt (x) Returns , the time-integral
of x from 0 to t with the initial
condition being computed in the DC
analysis.

idt (x,ic) Returns , the time-
integral ofx from 0 tot with initial
conditionic. In DC analysis,ic is
returned.

td
d

x t( )

x τ( ) τd
0
t∫

x τ( ) τ ic+d
0
t∫
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When specified with initial conditions, theidt () operator returns the value of the initia
condition in DC and IC analyses and wheneverassert is given and is nonzero. Without
initial conditions,idt multiplies its argument by infinity in DC analysis. Hence, withou
initial conditions, it must be used in a system with feedback that forces its argume
zero. The optional parameterabstol or nature is used to derive an absolute tolerance 
needed. Whether an absolute tolerance is needed depends on the context in whichidt is
used. See section 4.4.3 for more information. The absolute tolerance applies to the
of theidt  operator and is the largest signal level that is considered negligible.

4.4.6 Circular Integrator Operator

The idtmod operator, also called thecircular integrator, converts an expression
argument into its indefinitely integrated form similar toidt  operator.

idt (x,ic,assert) Returns , the time-
integral ofx from t0 to t with initial
conditionic. Assertis a integer-valued
expression.idt  returnsic whenassert
is nonzero.t0 is the time whenassert
last became 0.

idt (x,ic,assert,abstol) Same as above, except absolute
tolerance is specified explicitly.

idt(x,ic,assert,nature) Same as above, except nature is
specified explicitly.

Operator Example Comments

idtmod idtmod (x) Returns , the time-integral
of x from 0 to t with the initial
condition being computed in the DC
analysis.

idtmod(x,ic) Returns , the time-
integral ofx from 0 tot with initial
conditionic. In DC analysis,ic is
returned.

Operator Example Comments

x τ( ) τ ic+d
t0

t∫

x τ( ) τd
0
t∫

x τ( ) τ ic+d
0
t∫
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The initial condition is optional. If the initial condition is not specified, it defaults to zer
If idtmod is used in a system with feedback configuration that forcesexpr to zero, the
initial condition can be omitted without any unexpected behavior during simulation.
example, an operational amplifier alone needs an initial condition, but the same amp
with the right external feedback circuitry does not need that forced DC solution.

The initial condition shall force the DC solution to the system.

The output of theidtmod function shall remain in the range

offset <=idtmod < offset+modulus

Themodulus shall be an expression that evaluates to a positive value. If the modulu
not specified, thenidtmod shall behave likeidt , and perform no limiting on the output
of the integrator.

The default foroffset shall be zero.

The following relationship betweenidt  andidtmod shall hold at all times.

Let

y = idt (expr, ic) ;

z = idtmod(expr, ic, modulus, offset) ;

Then

y = n * modulus + z ; // nis an integer

where

offset≤ z < modulus + offset

idtmod(x,ic,modulus) Returns k, where  0 <= k < modulus
and k is such that
n* modulus  + k, n = ... -3,-2,-
1,0,1,2,3....

idtmod(x,ic,modulus,
offset)

Returns k, whereoffset <= k <

offset + modulus  and k is such
that n* modulus  + k

idtmod(x,ic,assert,
abstol)

Same as above, except absolute
tolerance is specified explicitly.

idtmod(x,a,assert,
nature)

Same as above, except nature is
specified explicitly.

Operator Example Comments

x τ( ) τd
0
t∫ ic+ =

x τ( ) τd
0
t∫ ic+ =
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In this example, the circular integrator is useful in cases where the integral can get
large, such as a VCO. In a VCO we are only interested in the output values in the r
[0,2π],

phase =idtmod(fc + gain∗V(IN), 0, 1, 0);

V(OUT) <+ sin(2∗‘M_PI∗phase);

In the example above, the circular integrator returns a value in the range [0,1].

4.4.7 Delay Operator

delay implements transport delay for continuous waveforms (use thetransition operator
to delay discrete-valued waveforms). The general form is:

delay(input, td [, maxdelay])

input is delayed by the amounttd. In all casestd must be a positive number. If the
optionalmaxdelay is specified thentd can vary, but it shall be an error if it becomes
larger thanmaxdelay. If maxdelayis not specified, changes totd shall be ignored. If
maxdelay is specified, changes to it are ignored and initial value ofmaxdelayis used.

In DC and operating point analyses,delay() returns the value of itsinput.

In AC and other small-signal analyses, the delay operator phase-shifts the input
expression to the output of the delay operator according to the following:.

In time-domain analyses, delay introduces a transport delay equal to the instantan
value oftd according to the following:

The transport delay, td, can be either constant (typical case) or vary as a function of
whenmaxdelayis defined. A time-dependent transport delay is illustrated below with
ramp input to the delay operator for both positive and negative changes in the tran
delaytd and amaxdelay of 5.

Outputω( ) Input ω( ) e
jωtd–⋅=

Output t( ) Input max t td, 0–( )( )=
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From time 0 until 2s, the output remains at input(0). With a delay of 2s, the output t
starts tracking the input(t - 2). At 3s, the transport delay changes from 2s to 4s, switc
the output back to input(0) since input(max(t-td,0)) returns 0. The output remains at
level until 4s when it once again starts tracking the input from t = 0. At 5s thetransport
delay goes to 1s, and the output correspondingly jumps from its current value to the v
defined by input(t - 1).

4.4.8 Transition Filter

transition  smooths out piece-wise constant waveforms. The transition filter is used
imitate transitions and delays on digital signals. (For non-piecewise-constant signal
slew). This function provides controlled transitions between discrete signal levels b
setting the rise time and fall time of signal transitions.transition stretches instantaneous
changes in signals over a finite amount of time, as shown below, and can delay th
transitions

.

The general form is

transition (expression [ , delay [ , rise_time [ , fall_time [ , Timetol]]]])

transition  takes the following arguments (all real-valued expressions):

• The input expression

Input

Output

td (s)

4

3

2

1

2 4 6

tr tft0 t0

d

output_expression(t)input_expression(t)
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• The delay time (must be nonnegative)

• The rise time (must be greater than or equal to 0)

• The fall time (must be greater than or equal to 0)

• The Timetol ( must be positive)

The input expression is expected to evaluate over time to a piecewise constant
waveform. When applied,transition  forces all positive transitions ofexpression to
occur overrise_time and all negative transitions to occur infall_time, after an initial
delay ofdelay. Thus,delay models transport delay andrise_time andfall_time model
inertial delay.

transition returns areal number that over time describes a piecewise linear function
Timetolis not specified, the transition function causes the simulator to place time-po
at both corners of a transition to assure that each transition is adequately resolved
Timetolis specified, the transition function causes the simulator to place time-poin
both corners of a transition.

delay, rise_time, fall_time,andTimetolare optional. Ifdelayis not specified, it is taken
to be zero. If only a positiverise_time value is specified, the simulator uses it for both
rise and fall times. If neither rise nor fall time are specified or are equal to0, andTimetol
is specified, the rise and fall time are taken to beTimetol. If neither rise nor fall time are
specified or are equal to 0, andTimetolis not specified, the rise and fall time are take
to be1.

The rationale for this behavior is that the default behavior is chosen to approximate
ideal behavior of a zero duration transition. Forcing a zero duration transition is
undesirable because it may cause convergence problems. Instead, a negligible, b
nonzero, transition time is used. The small nonzero transition time allows the simu
to shrink the timestep small enough to experience a smooth transition if necessar
avoid convergence problems. The  transition time complier directive provides wha

considered a negligible transition time. The simulator does not force a time point a
trailing corner of a transition to avoid causing the simulator to take very small time st
which would result in poor performance.

Input to transition filter

Response of transition filter

Response of transition filter

with transition times specified

with transition times defaulted
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In DC analysis,transition passes the value of theexpressiondirectly to its output. The
transition filter is designed to smooth out piecewise constant waveforms. When app
to waveforms that vary smoothly, the simulation results are generally unsatisfactor
addition, applying the transition function to a continuously varying waveform can ca
the simulator to run slowly. Usetransition for discrete signals andslewfor continuous
signals.

If interrupted on a rising transition,transition  tries to complete the transition in the
specified time.

• If the new final value level is below the value level at the point of the interrupti
(the current value),transition  uses the old destination as the origin.

• If the new destination is above the current level, the first origin is retained.

In the following example, a rising transition is interrupted near its midpoint, and the n
destination level of the value is below the current value. For the new origin and
destination,transition computes the slope that completes the transition from the ori
(not the current value) in the specified transition time. It then uses the computed slo
transition from the current value to the new destination.

With different delays, it is possible for a new transition to be specified before a
previously specified transition starts. The transition function handles this by deleting
transitions that would follow a newly scheduled transition. A transition function can
have an arbitrary number of transitions pending. A transition function can be used in
way to implement transport delay for discrete-valued signals.

Because the transition function cannot be linearized in general, it is not possible t
accurately represent a transition function in AC analysis. The AC transfer function
approximately modeled as having unity transmission for all frequencies in all situati
Because the transition function is intended to handle discrete-valued signals, the 
signals present in AC analysis rarely reach transition functions. As a result, the
approximation used is generally sufficient.

tr

tf

Original destination

New destination

Interruption

output_expression(t)

New origin
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4.4.8.1 QAM Modulator

In this example, the transition function is used to control the rate of change of the
modulation signal in a QAM modulator.

module qam16(out, in) ;
parameter freq=1.0, ampl=1.0, dly=0, ttime=1.0/freq ;
input  [0:4] in ;
output out ;
electrical [0:4] in;
electrical out ;
real x, y ;
integer row, col ;

analog begin
row = 2*(V(in[3]) > thresh) + (V(in[2]) > thresh) ;
col = 2*(V(in[1]) > thresh) + (V(in[0]) > thresh) ;
x = transition (row - 1.5, dly, ttime) ;
y = transition (col - 1.5, dly, ttime) ;
V(out) <+ ampl*x*cos(2*‘M_PI *freq*$realtime)

+ ampl*y*sin(2*‘M_PI *freq*$realtime) ;
bound_step(0.1/freq) ;

end
endmodule

4.4.8.2 A-D Converter

The following example, an analog behavioral N-bit analog to digital converter,
demonstrates the ability of the transition function to handle vectors.

moduleadc(in, clk, out) ;
parameter bits = 8, fullscale = 1.0, dly = 0, ttime = 10n ;
input  in, clk ;
output [0:bits-1] out ;
electrical in, clk;
electrical [0:bits-1] out;
real sample, thresh ;
integer result[0:bits-1];
genvar i;

analog begin
@(cross(V(clk)-2.5, +1)) begin

sample = V(in);
thresh = full_scale/2.0;
for  (i = bits - 1; i >= 0; i = i - 1)begin

if  (sample > thresh)begin
result[i] = 1.0;
sample = sample - thresh ;

end else begin
result[i] = 0.0;

end
sample = 2.0*sample;
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end
end
for (i = 0; i < bits; i = i + 1) begin

V(out) <+ transition (result[i], dly, ttime);
end

end
endmodule

4.4.9 Slew Filter

Theslewanalog operator bounds the rate of change (slope) of the waveform. A ty
use forslew is generating continuous signals from piecewise continuous signals. (F
discrete-valued signals, seetransition .) The general form is

slew(expression [, max_pos_slew_rate [, max_neg_slew_rate ] ])

slew takes the following arguments (allreal numbers):

• The input expression

• The maximum positive slew rate

• The maximum negative slew rate

When applied,slew forces all transitions ofexpression faster thanmax_pos_slew_rate
to change atmax_pos_slew_rate rate for positive transitions and limits negative
transitions tomax_neg_slew_rate rate

.

The two rate values are optional.max_pos_slew_rate must be greater
than 0 andmax_neg_slew_rate must be less than 0. If only one rate is specified, its
absolute value is used for both rates. If no rates are specified,slew passes the signal
through unchanged. If the rate of change ofexpression is less than the specified
maximum slew rates,slewreturns the value ofexpression. In DC analysis,slewsimply
passes the value of the destination to its output. In AC small-signal analyses, theslew
function has unity transfer function except when slewing, in which case it has zero
transmission through the function.

∆y
∆t
------ ratepmax≤∆y

∆t

output_expression(t)
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4.4.10 Last_Crossing Function

Related to the cross function, thelast_crossingfunction returns a real value representin
the simulation time when a signal expression last crossed 0.

The general form is

last_crossing( expression, direction) ;

Thedirection flag is interpreted in the same way as with thecross function. The
last_crossing function is subject to the same usage restrictions as thecross function.

Thelast_crossingfunction does not control the timestep to get accurate results, and u
linear interpolation to estimate the time of the last crossing. However, it can be used
thecross function for improved accuracy.

The following example measures the period of its input signal using cross and
last_crossing functions.

module period(in) ;
input  in ;
voltage in ;
integer crossings ;
real latest, previous ;

analog begin
@(initial_step) begin

crossings = 0 ;
previous = 0 ;

end

@(cross(V(in), +1)) begin
crossings = crossings + 1 ;
previous = latest ;

end
latest =last_crossing(V(in), +1) ;

@(final_step) begin
if  (crossings < 2)

$strobe("Could not measure period.") ;
else

$strobe("period = %g, crossings = %d",
latest-previous, crossings) ;

end
end

endmodule

Before the expression crosses zero for the first time, thelast_crossing function returns
a negative value.

4.4.11 Laplace Transform Filters

The Laplace transform filters implement lumped linear continuous-time filters. Eac
filter takes an optional parameterε, which is a real number or a nature used for derivin
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an absolute tolerance if needed. Whether an absolute tolerance is needed depends
context in which the filter is used.

4.4.11.1 laplace_zp

laplace_zp implements the zero-pole form of the Laplace transform filter.

laplace_zp(expr, ζ, ρ [ , ε ])
whereζ (zeta) is a vector ofM pairs of real numbers. Each pair represents a zero, the f
number in the pair is the real part of the zero, and the second is the imaginary par
Similarly, ρ (rho) is the vector ofN real pairs, one for each pole. The poles are given
the same manner as the zeros. The transfer function is

where  and  are the real and imaginary parts of the  zero, while  and
the real and imaginary parts of the pole. If a root (a pole or zero) is real, the imagin
part must be specified as 0. If a root is complex, its conjugate must also be presen
root is zero, then the term associated with it is implemented ass rather than ,
wherer is the root.

4.4.11.2 laplace_zd

laplace_zd implements the zero-denominator form of the Laplace transform filter.

laplace_zd(expr,ζ, d [ , ε ])
whereζ (zeta) is a vector ofM pairs of real numbers. Each pair represents a zero, the f
number in the pair is the real part of the zero, and the second is the imaginary par
Similarly, d is the vector ofN real numbers that contains the coefficients of the
denominator. Its transfer function is

H s( )
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where  and  are the real and imaginary parts of the  zero, while  is the
coefficient of the power ofs in the denominator. If a zero is real, the imaginary pa
must be specified as 0. If a zero is complex, its conjugate must also be present. If a
is zero, then the term associated with it is implemented ass rather than .

4.4.11.3 laplace_np

laplace_np implements the numerator-pole form of the Laplace transform filter.

laplace_np(expr, n, ρ [ , ε ])
wheren is a vector ofM real numbers that contains the coefficients of the numerato
Similarly, ρ (rho) is a vector ofN pairs of real numbers. Each pair represents a pole,
first number in the pair is the real part of the pole, and the second is the imaginary
The transfer function is

where is the coefficient of the power ofs in the numerator, while and are
the real and imaginary parts of the pole. If a pole is real, the imaginary part mus
specified as 0. If a pole is complex, its conjugate must also be present. If a pole is
then the term associated with it is implemented ass rather than .

4.4.11.4 laplace_nd

laplace_ndimplements the numerator-denominator form of the Laplace transform fil

laplace_nd(expr, n, d [ , ε ])
wheren is an vector ofM real numbers that contains the coefficients of the numerat
andd is a vector ofN real numbers that contains the coefficients of the denominator. T
transfer function is

ζk
r ζk
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where  is the coefficient of the  power ofs in the numerator, and  is the
coefficient of the  power of s in the denominator.

4.4.11.5 Examples

V(out) <+ laplace_zp(V(in), {-1,0}, {-1,-1,-1,1});

implements

and,

V(out) <+ laplace_nd(V(in), {0,1}, {-1,0,1});

implements

Finally, this example

V(out) <+ laplace_zp(white_noise(k), , {1,0,1,0,-1,0,-1,0});

implements a band-limited white noise source as

4.4.12 Z-Transform Filters

TheZ-transform filters implement linear discrete-time filters. Each filter supports th
parameterT that specifies the sampling period of the filter. A filter with unity transfe
function acts like a simple sample-and-hold that samples everyT seconds and exhibits
no delay.

All Z-transform filters share three common arguments,T, τ, andt0.Tspecifies the period
of the filter, is mandatory, and it must be positive.τ specifies the transition time, is
optional, and must be nonnegative. If the transition time is specified and is nonzero
timestep is controlled to accurately resolve both the leading and trailing corner of 
transition. If it is not specified, the transition time is taken to be one unit of time (a
defined by the‘timescale compiler directive) and the timestep is not controlled to
resolve the trailing corner of the transition. If the transition time is specified as 0, t
the output is abruptly discontinuous. It is not recommended that aZ-filter with 0
transition time be directly assigned to a branch. Finallyt0 specifies the time of the first
transition, and is also optional. If not given, the first transition occurs att=0.

nk kth dk
kth

H s( ) 1 s+

1 s
1 j+
-----------+ 

  1 s
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-----------+ 
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4.4.12.1 zi_zp

zi_zp implements the zero-pole form of theZ transform filter.

zi_zp(expr,ζ, ρ, T [ , τ [ , t0] ])

whereζ (zeta) is a vector ofM pairs of real numbers. Each pair represents a zero, the f
number in the pair is the real part of the zero, and the second is the imaginary par
Similarly, ρ (rho) is the vector ofN real pairs, one for each pole. The poles are given
the same manner as the zeros. The transfer function is

where  and  are the real and imaginary parts of the  zero, while  and
the real and imaginary parts of the pole. If a root (a pole or zero) is real, the imagin
part must be specified as 0. If a root is complex, its conjugate must also be presen
root is zero, then the term associated with it is implemented asz rather than ,
wherer is the root.

4.4.12.2 zi_zd

zi_zd implements the zero-denominator form of theZ transform filter.

zi_zd(expr,ζ, d, T [ , τ [ , t0] ])

whereζ (zeta) is a vector ofM pairs of real numbers. Each pair represents a zero, the f
number in the pair is the real part of the zero, and the second is the imaginary par
Similarly, d is the vector ofN real numbers that contains the coefficients of the
denominator. Its transfer function is

where  and  are the real and imaginary parts of the  zero, while  is the
coefficient of the power ofs in the denominator. If a zero is real, the imaginary pa
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must be specified as 0. If a zero is complex, its conjugate must also be present. If a
is zero, then the term associated with it is implemented asz rather than .

4.4.12.3 zi_np

zi_np implements the numerator-pole form of theZ transform filter.

zi_np(expr, n,ρ, T [ , τ [ , t0] ])

wheren is a vector ofM real numbers that contains the coefficients of the numerato
Similarly, ρ (rho) is a vector ofN pairs of real numbers. Each pair represents a pole,
first number in the pair is the real part of the pole, and the second is the imaginary
The transfer function is

where is the coefficient of the power ofs in the numerator, while and are
the real and imaginary parts of the pole. If a pole is real, the imaginary part mus
specified as 0. If a pole is complex, its conjugate must also be present. If a pole is
then the term associated with it is implemented asz rather than .

4.4.12.4 zi_nd

zi_nd implements the numerator-denominator form of theZ transform filter.

zi_nd(expr, n, d,T [ , τ [ , t0] ])

wheren is an vector ofM real numbers that contains the coefficients of the numerat
andd is a vector ofN real numbers that contains the coefficients of the denominator. T
transfer function is

where  is the coefficient of the  power ofs in the numerator, and  is the
coefficient of the  power of s in the denominator.
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4.4.13 Limited Exponential

The limexp function is an operator whose internal state contains information about
argument on previous iterations. It returns a real value that is the exponential of its s
real argument, however it internally limits the change of its output from iteration to
iteration in order to improve convergence. On any iteration where the change in th
output of thelimexp function is bounded, the simulator is prevented from terminatin
the iteration. Thus, the simulator can only converge when the output oflimexp equals
the exponential of the input. The general form is

limexp ( expr )

The apparent behavior oflimexp is not distinguishable fromexp, except usinglimexp
to model semiconductor junctions generally results in dramatically improved
convergence. There are different ways of implementing limiting algorithms for the
exponential1.

4.4.14 Constant vs Dynamic Arguments

Some of the arguments to the analog operators described above and events descr
section 6 expect dynamic expressions and some expect their arguments to be co
expressions. The dynamic expressions can be functions of circuit quantities and c
change during an analysis. The constant expressions remain static through out an
analysis.

Table 4-15 summarizes the arguments of the analog operators defined earlier.

1. Laurence W. Nagel, "SPICE2: A computer program to simulate semiconductor
circuits," Memorandum No. ERL-M520, University of California, Berkeley, Californi
May 1975.

W. J. McCalla,Fundamentals of Computer-Aided Circuit Simulation. Kluwer Academic
Publishers, 1988.

Table 4-15 : Analog operator arguments

Operator
Constant expression
arguments

Dynamic expression
arguments

ddt tol expr

idt tol expr, ic, assert

idtmod tol, modulus, offset expr, ic

cross abstol, timetol expr, dir

last_crossing expr, dir

delay max_td expr, td
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If a dynamic expression is passed as an argument that expects a constant expressio
the value of the dynamic expression at the start of the analysis is taken to be the con
value of the argument. Any further change in value of that expression is ignored du
the iterative analysis.

4.5 Analysis Dependent Functions

This section describes theanalysis function, which is used to determine which type o
analysis is being performed. The remaining functions are used to implement small-s
sources. The small-signal source functions only affect the behavior of a module d
small-signal analyses. The small-signal analyses provided by SPICE include the AC
noise analyses, but others are possible. When not active, the small-signal source
functions return 0.

4.5.1 Analysis

The analysis function takes one or more string arguments and returns 1 if any argu
matches the current analysis type. Otherwise it returns 0.

transition expr, td, tr, tf

slew expr, sr, sf

zi_zp
zi_zd
zi_np
zi_nd

zeros, poles, T, t0 expr, t

laplace_zp
laplace_zd
laplace_np
laplace_nd

poles, tol, zero expr

bound_step expr

timer tstop, period

limexp expr

Table 4-15 : Analog operator arguments

Operator
Constant expression
arguments

Dynamic expression
arguments
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There is no fixed set of analysis types. Each simulator can support its own set. How
simulators shall use the following types to represent analyses that are similar to th
provided by SPICE.

Any type names unsupported by a simulator are assumed to not be a match.

Table 4-16 describes the implementaion of the analysis function. Each column show
return value of the function. A status of1 represents True and0 represents False.

Name Analysis Description

“ac” .AC analysis.

“dc” .OP or .DC analysis.

“noise” .NOISE analysis.

“tran” .TRAN analysis.

“ic” The initial-condition analysis that preceds a
transient analysis.

“static” Any equilibrium point calculation, including a
DC analysis as well as those that precede
another analysis, such as the DC analysis that
precedes an AC or noise analysis, or the IC
analysis that precedes a transient analysis.

“nodeset” The phase during an equilibrium point
calculation where nodesets are forced.

Table 4-16 Return Values for analysis functions

Analysis Argument  Simulator Analysis Types
DC TRAN AC NOISE

              OP TRAN UIC   OP AC    OP AC

First part of "static" "nodeset" 1 1     0          ? 1    0 1    0

Initial DC state "static" 1 1     0          ? 1    0 1    0

Inital condition "ic" 0 1     0          ? 0    0 0    0

Transfer function "dc" 1 0     0          ? 0    0 0    0

Transient "tran" 0 1     1          ? 0    0 0    0

Small-signal "ac" 0 0     0          ? 1    1 0    0

Noise "noise" 0 0     0          ? 0    0 1    1
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Using theanalysisfunction, it is possible to have a module behave differently depend
on which analysis is being run. For example, it is possible to implement nodesets 
initial conditions using the analysis function and switch branches.

if  (analysis("ic"))
V(cap)<+ initial_value;

else
I(cap)<+ ddt(C*V(cap));

4.5.2 AC Stimulus

A small-signal analysis computes the steady-state response of a system that has 
linearized about its operating point and is driven by a small sinusoid. The sinusoid
stimulus is provided using theac_stim function.

ac_stim([analysis_name [, mag [, phase]]])

The AC stimulus function returns 0 during large-signal analyses (such as DC and
transient) as well as on all small-signal analyses with names different from
analysis_name.The name of a small-signal analysis is implementation dependent,
though it is expected that the name of the equivalent of a SPICE AC analysis will 
named “ac”, which is the default value ofanalysis_name. When the name of the small
signal analysis matchesanalysis_name, the source becomes active and models a sou
with magnitudemagand phasephase. The default magnitude is 1 and the default pha
is 0. Phase is given in radians.

4.5.3 Noise

Several functions are provided to support noise modeling during small-signal analy
To model large-signal noise during transient analyses, use the$random() system task.
The noise functions are often referred to as noise sources. There are three noise
functions, one models white noise processes, another models1/f or flicker noise
processes, and the last interpolates a vector to model a process where the spectral
of the noise varies as a piecewise linear function of frequency. The noise function
only active in small-signal noise analyses, and return 0 otherwise.

4.5.3.1 white_noise

White noise processes are those whose current value is completely uncorrelated wi
previous or future values. This implies that their spectral density does not depend
frequency. They are modeled using

white_noise(pwr [ , name ])

wherewhite_noisegenerates white noise with a power ofpwr. For example, the thermal
noise of a resistor could be modelled using

I(a,b)<+ V(a,b)/R +
white_noise(4 * ‘P_K  * $temperature/R, "thermal");
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The optionalnameargument acts as a label for the noise source that is used if the
simulator outputs the individual contribution of each noise source to the total outp
noise. The contributions of noise sources with the same name from the same instan
a module are combined in the noise contribution summary.

4.5.3.2 flicker_noise

Theflicker_noise function models flicker noise.

flicker_noise(pwr, exp [ , name ])

which generates pink noise with a power ofpwr at 1Hz that varies in proportion to1/f exp.

The optionalnameargument acts as a label for the noise source that is used if the
simulator outputs the individual contribution of each noise source to the total outp
noise. The contributions of noise sources with the same name from the same instan
a module are combined in the noise contribution summary.

4.5.3.3 noise_table

Thenoise_table function interpolates a vector to model a process where the spectr
density of the noise varies as a piecewise linear function of frequency.

noise_table(vector [ , name ])

wherevectorcontains pairs of real numbers, the first number in each pair is the freque
in Hertz, and the second is the power. Noise pairs are specified in the order of asce
frequencies.noise_tableperforms piecewise linear interpolation to compute the pow
spectral density generated by the function at each frequency.

The optionalnameargument acts as a label for the noise source that is used if the
simulator outputs the individual contribution of each noise source to the total outp
noise. The contributions of noise sources with the same name from the same instan
a module are combined in the noise contribution summary.

4.5.3.4 Noise model for diode

The noise of a junction diode could be modelled as follows:

I(a,c)<+ is*(exp(V(a,c) / (n *$vt)) - 1)
+ white_noise(2*‘P_Q*I(<a>))
+ flicker_noise(kf* pow(abs(I(<a>)), af), ef);

4.5.3.5 Correlated noise

Each noise function generates noise that is uncorrelated with the noise generated by
functions. Perfectly correlated noise is generated by using the output of one noise
function for more than one noise source. Partially correlated noise is generated by
combining the output of shared and unshared noise functions.

Consider the case where two noise voltages are perfectly correlated:
Version 1.4 Verilog-AMS Language Reference Manual 4-33



User defined functions Expressions

al

tion
n = white_noise(pwr);
V(a,b)<+ c1*n;
V(c,d) <+ c2*n;

One can also model partially correlated noise sources:

n1 =white_noise(1-corr);
n2 =white_noise(1-corr);
n12 =white_noise(corr);
V(a,b)<+ Kv*(n1 + n12);
I(b,c) <+ Ki*(n2 + n12);

4.6 User defined functions

The purpose of a user defined function is to return a value that is to be used in an
expression. All functions are defined within modules. Each function can be a digit
function (as defined inIEEE 1364-1995) or an anolog function.

4.6.1 Defining an analog function

The syntax for defining an analog function is as follows:

Figure 4-3: Syntax for an analog function declaration

An analog function declaration shall begin with the keywordsanalog function, followed
by the type of the return value from the function, followed by the name of the func
and a semicolon, and shall end with the keywordendfunction.

analog_function_declaration ::=
analog function [ type ] function_identifier ;
function_item_declaration { function_item_declaration }
statement
endfunction

type ::=
integer

| real

function_item_declaration ::=
input_declaration

| block_item_declaration

block_item_declaration ::=
parameter_declaration

| integer_declaration
| real_declaration
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typespecifies the return value of the function; its use is optional.typecan be areal or an
integer; if unspecified, the default isreal.

An analog function:

• can use any statements available for conditional execution (see 6.1);

• shall not use access functions,

• shall not use contribution statements or event control statements;

• shall have at least one input declared;
The block item declaration shall declare the type of the inputs as well as lo
variables used in the function.

• shall not use named blocks; and

• shall only reference locally-defined variables or variables passed as argum

The following example defines an analog function calledmaxValue, which returns
potential of the node that is larger in magnitude.

analog function real maxValue;
input  n1, n2 ;
real n1, n2 ;
begin

// code to compare potential of two nodes
maxValue = (n1 > n2) ? n1 : n2 ;

end
endfunction

4.6.2 Returning a value from an analog function

The analog function definition implicitly declares a variable, internal to the analog
function, with the same name as the analog function. This variable has the same ty
the type specified in the analog function declaration. The analog function definition
initializes the return value from the analog function by assigning the analog functio
result to the internal variable with the same name as the analog function. This var
can be read and assigned within the flow; its last assigned value is passed back o
return call.

The following line (from the previous example) illustrates this concept:

maxValue = (n1 > n2) ? n1 : n2 ;

An analog function definition must include an assignment of the analog function re
value to the internal variable that has the same name as the analog function name
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4.6.3 Calling an analog function

An analog function call is an operand within an expression. The analog function call
the following syntax:

Figure 4-4: Syntax for function call

The order of evaluation of the arguments to an analog function call is undefined.

An analog function:

• shall not call itself directly or indirectly, that is, recursive functions are not
permitted;

• shall only be called within an analog block; and

• can be called outside of their immediate scope.

The following example usesmaxValue function defined in section 4.6.1

V(out) <+ maxValue(val1, val2) ;

analog_function_call  ::=
function_identifier( expression {, expression })
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Section 5

Signals

5.1 Analog Signals

Analog signals are distinguished from digital signals in that an analog signal must h
adiscipline with continuous domain. Disciplines, nodes and branches are describe
Section 3, and ports are described in Section 8.

This section describes signal access mechanisms and operators in Verilog-AMS H

5.1.1 Access Functions

Flows and potentials on nodes, ports, and branches are accessed usingaccess functions.
The name of the access function is taken from the discipline of the node, port, or br
associated with the signal.

For example, consider a named electrical branchb whereelectrical is a discipline with
V as the access function for the potential andI as the access function for the flow. The
potential (voltage) would be accessed with:

V(b)

and the flow (current) is accessed with

I(b)

Unnamed branches are accessed in a similar manner, except that the access functi
applied to nodes or ports rather than branches (terminals of the branch). For exam
n1 andn2 are electrical nodes or ports, then

V(n1, n2)

creates an unnamed branch fromn1 to n2 if it does not already exist, and then access
the branch potential (or the potential difference betweenn1 to n2),and

V(n1)

does the same fromn1 to ground. In other words, accessing the potential from a node
port to a node or port defines an unnamed branch. Accessing the potential on a s
node or port defines an unnamed branch from that node or port toground. There can only
be one unnamed branch between any two nodes or ports.

An analogous access method is used for flows.

I(n1, n2)

creates an unnamed branch fromn1 to n2 if it does not already exist and then accesse
the branch flow, and
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I(n1)

does the same fromn1 to ground.

Thus, accessing the flow from a node or port to a node or port defines an unname
branch. Accessing the potential on a single node or port defines an unnamed branch
that node or port toground.

It is also possible to access the flow passing through a port into a module. The nam
the access function is derived from the flow nature of the discipline of the port. Howe
in this case "(<>)" is used to delimit the port name rather than "()". For example,

I(<p1>)

is used to access the current flow into the module through electrical port p1. This
capability is discussed further in section 5.1.4.

5.1.2 Probes and Sources

It is possible to interpret the behavioral descriptions in Verilog-AMS HDL as a netwo
of probes and controlled sources. While it is not necessary to do so, it is often helpfu
two reasons,

• Describe the component with a network of probes and controlled sources, 
then use the simple rules presented here to map the network into a behavi
description.

• Often behavioral descriptions that are difficult to decipher can be more eas
understood if it is first converted into a network of probes and controlled sour

One additional benefit of the probe/source interpretation is that it provides an
unambiguous way of defining the behavior for manipulating signals.

5.1.2.1 Sources

A branch, either named or unnamed, is asource branchif either the potential or the flow
is assigned a value by a contribution statement anywhere in the module. It is apotential
sourceif the branch potential is specified, and it is aflow source if the branch flow is
specified. A branch cannot simultaneously be both a potential and a flow source, th
it can switch between them, in which case it is referred to as being aswitch branch.

Both the potential and the flow of a source branch are accessible in expressions
anywhere in the module. The models for potential and flow sources are shown be
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Figure 5-1: Equivalent circuit models for source branches.

5.1.2.2 Probes

If no value is specified for either the potential or the flow, the branch is aprobe. If the
flow of the branch is used in an expression anywhere in the module, the branch is aflow
probe, otherwise the branch is apotential probe. Using both the potential and the flow
of a probe branch is considered illegal. The models for probe branches are shown

.

Figure 5-2: Equivalent circuit models for probe branches.

The branch potential of a flow probe is zero. The branch flow of a potential probe is z

5.1.3 Examples

The following examples demonstrate how to formulate models and the correspond
between the behavioral description and the equivalent probe/source model.

f is a probe that measures the flow through the branch, andp is a probe that
measures the potential across the branch.

f

p

f

p

p f
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For simplification, only the node or branch declarations and contribution statement
shown.

5.1.3.1 The Four Controlled Sources

The model for a voltage controlled voltage source is.

branch (ps,ns) in;
branch (p,n) out;
V(out) <+ A * V(in);

The model for a voltage controlled current source is.

branch (ps,ns) in;
branch (p,n) out;
I(out) <+ A * V(in);

The model for a current controlled voltage source is.

branch (ps,ns) in;
branch (p,n) out;
V(out) <+ A * I(in);

The model for a current controlled current source is.

branch (ps,ns) in;
branch (p,n) out;
I(out) <+ A * I(in);

5.1.3.2 Resistor and Conductor

The model for a linear conductor is

Figure 5-3: Linear conductor model

The assignment toI(cond)makesconda current source branch andV(cond)simply accesses
the optional potential probe built into the current source branch.

v
branch (p,n) cond;
I(cond)<+ G * V(cond);

Gv
G
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The model for a linear resistor is

Figure 5-4: Linear resistor model

The assignment toV(res) makesres a potential source branch andI(res) simply accesses
the optional flow probe built into the potential source branch.

5.1.3.3 RLC Circuits

A series RLC circuit is formulated by summing the voltage across the three compon

It is described as

V(p, n) <+ R*I(p, n) + L*ddt(I(p, n)) + idt (I(p, n))/C;

A parallel RLC circuit is formulated by summing the currents through the three
components.

It is described as

I(p, n) <+ V(p, n)/R + C*ddt(V(p, n)) + idt (V(p, n))/L;

5.1.3.4 Simple Implicit Diode

Verilog-AMS HDL allows components to be described with implicit equations. In th
following example, which is a simple diode with a series resistor, the model is imp
because the diode currentI(a, c) appears on both sides of the contribution operator. T
current of the diode branch is specified, making it a flow source branch. In addition, b
the voltage and current of diode branch is used in the behavioral description.

I(a, c)<+ is*(limexp((V(a, c) – rs*I(a, c))/$vt) – 1);

i

Ri

branch (p,n) res;
V(res)<+ R * I(res); R

v t( ) Ri t( ) L
td

d
i t( )

1
C
---- i τ( ) τd

∞–

t

∫+ +=

i t( ) v t( )
R

-------- C
td

d
v t( )

1
L
--- v τ( ) τd

∞–

t

∫++=
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5.1.4 Port Branches

The port access function is used to access the flow into a port of a module. The nam
the access function is derived from the flow nature of the discipline of the port. Howe
in this case "(<>)" is used to delimit the port name. For example,

I(<a>)

accesses the current through module porta.

As one example of how this capability might be used, consider the junction diodere-
written such that the total diode current is monitored and a message is issued if it exc
a given value:

module diode (a, c);
electrical a, c;
branch (a, c) i_diode, junc_cap;
parameter real is = 1e-14, tf = 0, cjo = 0, imax = 1, phi = 0.7 ;

analog begin
I(i_diode)<+ is*(limexp(V(i_diode)/$vt) – 1);
I(junc_cap) <+ddt(tf*I(i_diode) - 2*cjo*sqrt(phi*(phi*V(junc_cap))));

if  (I (<a>) > imax)
$strobe( "Warning: diode is melting!" );

end
endmodule

The expression V(<a>) is invalid for ports and nodes, where V is a potential acces
function. The port branch I(<a>) cannot be used on the left side of a contribution ope
<+.

5.1.5 Switch Branches

Source branches have the ability to switch between being potential and flow source
switch a branch to being a potential source, assign to its potential. To switch a bran
being a flow source, assign to its flow. This type of branch is useful when modeling id
switches and mechanical stops. The full circuit model for a branch is shown below
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Figure 5-5: Circuit model for a source branch.

An ideal relay (a controlled switch) can be implemented as

if  (closed)
V(p,n) <+ 0;

else
I(p,n) <+ 0;

A discontinuity of order zero is assumed to occur when the branch switches and so
not necessary to use thediscontinuity function with switch branches.

5.1.6 Unassigned Sources

If a value is not assigned to a branch, the branch flow is set to zero.

Consider

if  (closed)
V(p,n) <+ 0;

This example is equivalent to

if  (closed)
V(p,n) <+ 0;

else
I(p,n) <+ 0;

Position of the switch depends on whether a potential or flow is assigned to the
branch.

f

p
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5.2 Signal Access for Vector Branches

Verilog-AMS HDL allows ports, nodes, and branches to be arranged as vectors, how
the access functions can only be applied to scalars or individual elements of a vector
scalar element of a vector is selected with an index. For example,

V(in[1])

accesses the voltagein[1].

The index must be a genvar expression. If the signal access occurs within the scop
looping construct, then the index expression may also reference variables declare
genvars.

The following examples illustrate legal applications of access functions to elements
an analog signal vector or buss. In the N-bit DAC example, the access to the analog
'in' is done within via a genvar expression of the genvar variable 'i'.  In the followin
fixed-width DAC example, literal values are used to access elements of the buss dir

//
// N-bit DAC example.
//

module dac(out, in, clk);
parameter integer width = 8 from [2:24];
parameter real fullscale = 1.0, td = 1n, tt = 1n;
output out;
input  [1:width] in;
input  clk;
electrical out;
electrical [1:width] in;
electrical clk;

real aout;
genvar i;

analog begin
@(cross(V(clk) - 2.5, +1))begin

aout = 0;
for  (i = width - 1; i >= 0; i = i - 1)begin

if  (V(in[i]) > 2.5) begin
aout = aout + fullscale/pow(2, width - i);

end
end

end
V(out) <+ transition (aout, td, tt);

end
endmodule

//
// 8-bit fixed-width DAC example.
//
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module dac8(out, in, clk);
parameter real fullscale = 1.0, td = 1n, tt = 1n;
output out;
input  [1:8] in;
input  clk;
electrical out;
electrical [1:8] in;
electrical clk;

real aout;

analog begin
@(cross(V(clk) - 2.5, +1))begin

aout = 0;
aout = aout + ((V(in[7]) > 2.5) ? fullscale/2.0 : 0.0);
aout = aout + ((V(in[6]) > 2.5) ? fullscale/4.0 : 0.0);
aout = aout + ((V(in[5]) > 2.5) ? fullscale/8.0 : 0.0);
aout = aout + ((V(in[4]) > 2.5) ? fullscale/16.0 : 0.0);
aout = aout + ((V(in[3]) > 2.5) ? fullscale/32.0 : 0.0);
aout = aout + ((V(in[2]) > 2.5) ? fullscale/64.0 : 0.0);
aout = aout + ((V(in[1]) > 2.5) ? fullscale/128.0 : 0.0);
aout = aout + ((V(in[0]) > 2.5) ? fullscale/256.0 : 0.0);

end

V(out) <+ transition (aout, td, tt);
end

endmodule

The syntax for analog signal access is as follows:
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Figure 5-6: Syntax for scalar selection of vector signals

5.3 Contribution statements

Verilog-AMS HDL defines thebranch contribution operator“<+” for the description of
analog behavior. This operator is only valid within theanalog block. Branch contribution
statements are statements that use the branch contribution operators to describe be
in terms of a mathematical mapping of input signals to output signals.

5.3.1 Branch Contribution Statements

In general, a branch contribution statement consists of two parts, a left-hand side,
right-hand side separated by a branch contribution operator. The right-hand side c
any expression that evaluates or can be promoted to a real value. The left-hand s
specifies the source branch signal that the right-hand side is to be assigned to. It 
consist of a signal access function applied to a branch. Hence, analog behaviors 
described using:

V(n1, n2)<+ expression ;

or

access_function ::=
bvalue

| pvalue
bvalue ::=

access_identifier( analog_signal_list)
analog_signal_list ::=

branch_identifier
| array_branch_identifier [ genvar_expression ]
| node_or_port_scalar_expression
| node_or_port_scalar_identifier ,node_or_port_scalar_identifier

node_or_port_scalar_expression ::=
node_or_port_identifier

| array_node_or_port_identifier [ genvar_expression ]
| vector_node_or_port_identifier [ genvar_expression ]

pvalue ::=
flow_access_identifier< port_scalar_expression>

port_scalar_expression ::=
port_identifier

| array_port_identifier [ genvar_expression ]
| vector_port_identifier [ genvar_expression ]
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I(n1, n2)<+ expression ;

where (n1, n2)represents an unnamed source branch, and V(n1,n2)refers to the potential
on the branch whileI(n1,n2)refers to the flow through the branch. The expression can
linear, nonlinear, or dynamic in nature. The left-hand side can not use a port acce
function.

This is illustrated in the following modules, which model a resistor and a capacitor

module resistor(p, n);
electrical p, n;
parameter real r = 0;

analog
V(p,n) <+ r*I(p, n);

endmodule

module capacitor(p, n);
electrical p, n;
parameter real c = 0;

analog
I(p,n) <+ c*ddt(V(p, n));

endmodule

Branch contribution statements implicitly define source branch relations. The branc
directed from the first node of the access function to the second node. If the second
is not specified,ground is taken as the reference node.

A branch relation is a path of the flow between two nodes in a module. Each node
two signals associated with it—the potential of the node and the flow out of the node
electrical circuits, the potential of a node is its voltage, whereas the flow out of the n
is its current. Similarly, each branch has two signals associated with it—the poten
across the branch and the flow through the branch.

For example, the following module models a simple single-ended amplifier.

module amp(out, in);

input  in;
output out;
electrical out, in;
parameter real gain = 1;

analog
V(out) <+ gain*V(in);

endmodule

For source branch contributions, the statement is evaluated as follows:

1. The simulator evaluates the right-hand side.

2. The simulator adds the value of the right-hand side to any previously retain
value for the branch for later assignment to the branch. If there are no previo
retained values, the value of the right-hand side itself is retained.
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3. At the end of the simulation cycle, the simulator assigns the retained value to
source branch.

Parasitics are added to the above amplifier by simply adding additional contributio
statements to model the input admittance and output impedance.

module amp(out, in);
input  in;
output out;
electrical out, in;
parameter real Gain = 1, Rin = 1, Cin = 1, Rout = 1, Lout = 1;

analog begin
// gain of amplifier
V(out) <+ gain*V(in);

// model input admittance
I(in) <+ V(in)/Rin;
I(in) <+ Cin*ddt(V(in));

// model output impedance
V(out) <+ Rout*I(out);
V(out) <+ Lout*ddt(I(out));

end

endmodule

Contributing a flow to a branch that already has a value retained for the potential re
in the potential being discarded and the branch being converted to a flow source.
Conversely, contributing a potential to a branch that already has a value retained fo
flow results in the flow being discarded and the branch being converted into a pote
source.

This is used to model switches, as shown in the following example:

module switch(p, n, cp, cn);
electrical p, n, cp, cn;
parameter real thresh = 0;

analog begin
// stop to resolve threshold crossings
@(cross(V(cp,cn) - thresh, 0));

if (V(cp,cn) > thresh)
V(p,n) <+ 0;

else
I(p,n) <+ 0;

end

endmodule

The syntax for source contribution statement is shown below:
Version 1.4 Verilog-AMS Language Reference Manual 5-12



Contribution statements Signals

n
plicit

tage

by
ut

a way

e

. In
.

Figure 5-7: Syntax for branch contribution

5.3.2 Indirect Branch Assignments

Verilog-AMS HDL allows descriptions that implicitly specify a branch voltage or
current in fixed-point form. The branch voltage or current is assigned a value by a
expression that uses the branch voltage or current. This occurred in the simple im
diode model above whereI(a,c)appeared on both sides of the contribution operator.

Consider the model for an ideal opamp. In this model, the output is driven to the vol
that results in the input voltage being zero. The constitutive equation is

V(in) == 0

This can be formulated as

V(out) <+ V(out) + V(in);

This statement defines the output of the opamp to be a controlled voltage source 
assigning toV(out) and defines the input to be high impedance by only probing the inp
voltage. The desired behavior results because the description is formulated in such
that it reduces toV(in) = 0. This approach does not result in the right tolerances being
applied to the equation ifout andin have different disciplines.

Verilog-AMS HDL includes a special syntax that is appropriate in this situation. Th
above branch contribution can be rewritten using anindirect branch assignment:

V(out): V(in) == 0;

which reads “findV(out) such thatV(in) == 0” . It indicates thatout should be driven with
a voltage source and the source voltage should be such that the given equation is
satisfied. Any branches referenced in the equation are only probed and not driven
particular,V(in) acts as a voltage probe.

A complete description of an ideal opamp is shown below:

module opamp(out, pin, nin);

electrical out, pin, nin;

analog
V(out):V(pin,nin) == 0;

endmodule

The syntax for the indirect assignment statement is

branch_contribution ::=
bvalue<+ expression;
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If there are multiple indirect assignments statements, it is often the case that the t
can be paired with any equation. Consider the following ordinary differential equa

which can be written as

V(x): ddt(V(x)) == f(V(x), V(y), V(z));
V(y): ddt(V(y)) == g(V(x), V(y), V(z));
V(z): ddt(V(z)) == h(V(x), V(y), V(z));

or

V(y): ddt(V(x)) == f(V(x), V(y), V(z));
V(z): ddt(V(y)) == g(V(x), V(y), V(z));
V(x): ddt(V(z)) == h(V(x), V(y), V(z));

or

V(z): ddt(V(x)) == f(V(x), V(y), V(z));
V(x): ddt(V(y)) == g(V(x), V(y), V(z));
V(y): ddt(V(z)) == h(V(x), V(y), V(z));

without affecting the results.

indirect_branch_assignement ::=
target: equation;

target ::=
bvalue

equation ::=
nexpr== expression

nexpr ::=
bvalue

| ddt ( bvalue)
| idt ( bvalue)

td
dx

f x y z, ,( )=

td
dy

g x y z, ,( )=

td
dz

h x y z, ,( )=
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5.3.2.1 Indirect Assignment and Contribution

Indirect assignment is incompatible with contribution. Once a value is indirectly
assigned to a branch, it cannot be contributed to using the branch contribution op
(‘<+’).
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Section 6

Analog Behavior

The description of an analog behavior consists of setting up contributions (Section 5
various nodes under certain procedural or timing control. This section describes a
analog procedural block, procedural control statements and analog timing control
functions.

6.1 Analog procedural block

Discrete time behavioral definitions within Verilog HDL are encapsulated within th
initial  andalways procedural blocks. Everyinitial  andalways block starts a separate
concurrent activity flow. For continuous time simulation, the behavioral description
encapsulated within theanalogprocedural block. Verilog-AMS HDL allows one analog
procedural block in a module definition.

Theanalog procedural block defines the behavior as a procedural sequence of
statements. The conditional and looping constructs are available for defining beha
within theanalog procedural block. Because the description is a continuous-time
behavioral description, no blocking event control statements (such as blocking de
events or waits) are supported.

The statements allowed within the analog block (Figure 6.1) are separated into tw
categories -analog_statementsandnon_analog_statements. Theanalog_statementsare
restricted to theanalogblock whereas thenon_analog_statementscan appear anywhere
within the module scope, including ananalog block. The distinction is based upon the
visibility and usage of these behavioral constructs within a Verilog-AMS module
definition.

The syntax for analog block is as follows:
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Figure 6-1: Syntax for analog procedural block

The statements within the analog block are used to define the continuous-time beh
of the module. The behavioral description is a mathematical mapping of input signa
output signals. The mapping is done with contribution statements of the form

signal<+ analog_expression ;

or indirect branch assignment. Theanalog_expressioncan be any combination of linear,
nonlinear, or differential expressions of module signals, constants and parameters
Section 5).

All analog blocks contained in various modules in a design are considered to be
executing concurrent with respect to each other.

6.2 Block statements

Theblock statements, also referred to assequential blocks, are a means of grouping two
or more statements together so that they act syntactically like a single statement. 
block statements are delimited by the keywordsbegin andend. The procedural
statements in a block statement are executed sequentially in the given order.

analog_block ::=
analog analog_statement

analog_statement ::=
null_statement

| analog_block_statement
| analog_branch_contribution
| analog_indirect_branch_assignment
| analog_procedural_assignment
| analog_conditional_statement
| analog_for_statement
| analog_case_statement
| analog_event_controlled_statement
| discontinuity_task
| bound_step_task
| system_task_enable
| non_analog_statement

non_analog_statement ::=
| block_statement
| procedural_assignment
| conditional_statement
| loop_statement
| case_statement
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The following is the formal syntax for sequential blocks:

Figure 6-2: Syntax for the sequential blocks

An analog_block_statement is ablock_statement that encapsulates one or more
analog_statements.

6.2.1 Block names

A sequential block can be named by adding: name_of_blockafter the keywordbegin. The
naming of a block allows local variables to be declared for the block.

All local variables are static—that is, a unique location exists for all variables and
leaving or entering blocks do not affect the values stored in them.

The block names give a means of uniquely identifying all variables at any simulati
time.

6.3 Procedural assignments

In Verilog-AMS HDL, the branch contributions and indirect branch assignments ar
used for modifying signals. The procedural assignments are used for modifying int
and real variables. The syntax for procedural assignments are as follows:

block_statement ::=
 begin [ : block_identifier { block_item_declaration } ]

{ statement }
 end

analog_block_statement ::=
 begin [ : block_identifier { block_item_declaration } ]

{ analog_statement }
 end

block_item_declaration ::=
 parameter_declaration
| integer_declaration
| real_declaration
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Figure 6-3: Syntax for procedural assignments

The left-hand side of a procedural assignment must be an integer or a real identif
an element of an integer or real array. The right-hand side expression can be any arb
expression constituted from legal operands and operators as described in Section

An analog_procedural_assignment is defined as a procedural assignment whose right-ha
sideexpression is ananalog_expression involving analog operators.

6.4 Conditional statement

Theconditional statement(or if-elsestatement) is used to make a decision as to wheth
a statement is executed or not. The syntax of a conditional statement is as follows

Figure 6-4: Syntax of conditional statement

If the expression evaluates to true (that is, has a non-zero value), thetrue_statementwill
be executed. If it evaluates to false (has a zero value), thetrue_statement will not be
executed. If there is anelsefalse_statementand expression is false, thefalse_statement
will be executed.

Since the numeric value of the if expression is tested for being zero, certain shortcu
possible. For example, the following two statements express the same logic:

procedural_assignment ::=
 lexpr= expression;

analog_procedural_assignment ::=
 lexpr= analog_expression;

lexpr ::=
integer_identifier

| real_identifier
| array_element

array_element ::=
integer_identifier [ expression]

| real_identifier [ expression]

conditional_statement ::=
if ( expression ) true_statement
 [ elsefalse_statement ]
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if  (expression)
if  (expression != 0)

Because the else part of anif -else is optional, there can be confusion when anelse is
omitted from a nestedif  sequence. This is resolved by always associating theelse with
the closest previousif  that lacks anelse. In the example below, theelse goes with the
inner if , as shown by indentation.

if (index > 0)
if (i > j)

result = i;
else // else applies to preceding if

result = j;

If that association is not desired, abegin-end block statement must be used to force the
proper association, as shown below.

if (index > 0) begin
if (i > j)

result = i;
end
else result = j;

Nesting of if statements (known as anif-else-if construct) is the most general way of
writing a multi-way decision. The expressions are evaluated in order; if any expres
is true, the statement associated with it will be executed, and this will terminate the w
chain. Each statement is either a single statement or a sequential block of statem

6.4.1 Analog Conditional Statements

Analog conditional statements are syntactically equivalent to conditional statemen
except that the true and/or false statement areanalog_statements. The conditional
expression must be agenvar_expression. See the discussion in section 4.4.1 regardin
restrictions on the usage of analog operators.

Figure 6-5: Syntax of analog conditional statement

6.5 Case statement

Thecase statement is a multi-way decision statement that tests whether an express
matches one of a number of other expressions, and branches accordingly. The ca
statement has the following syntax:

analog_conditional_statement ::=
if ( genvar_expression ) true_analog_statement
 [ elsefalse_analog_statement ]
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Figure 6-6: Syntax for case statement

Thedefault statement is optional. Use of multiple default statements in one case
statement is illegal.

The case expression and the case item expression can be computed at runtime; n
expression is required to be a constant expression.

Thecase_item_expressionsare evaluated and compared in the exact order in which th
are given. During the linear search, if one of thecaseitem expressions matches the cas
expression given in parentheses, then the statement associated with that case ite
executed. If all comparisons fail, and the default item is given, then the default item
statement is executed. If the default statement is not given, and all of the compari
fail, then none of the case item statements are executed.

6.5.1 Analog case statements

Analog case statements are syntactically equivalent to case statements except th
item statements can also beanalog_statements. The conditional expression must be a genv
expression. See the discussion in section 4.4.1 regarding restrictions on the usag
analog operators.

Figure 6-7: Syntax for analog case statement

case_statement ::=
 case ( expression) case_item { case_item }endcase

case_item ::=
 expression {, expression } : statement
| default [ : ] statement

analog_case_statement ::=
 case ( analog_expression) case_item { case_item }endcase

case_item ::=
 analog_expression {, analog_expression } : analog_statement
| default [ : ] analog_statement
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6.5.2 Constant expression in case statement

A constant expression can be used for case expression. The value of the constan
expression shall be compared against case item expressions.

The following example demonstrates the usage by modeling a 3-bit priority encod

integer [2:0] encode ;

case (1)
encode[2] :$display(“Select Line 2”) ;
encode[1] :$display(“Select Line 1”) ;
encode[0] :$display(“Select Line 0”) ;
default $strobe(“Error: One of the bits expected ON”);

endcase

Note that the case expression is a constant expression (1). The case items are expr
(array elements), and are compared against the constant expression for a match.

6.6 Looping statements

There are four types of looping statements -repeat, while, for  andgenerate. These
statements provide a means of controlling the execution of a statement zero, one, or
times.

for  andgenerate are the only looping statements that can be used to describe ana
behaviors using analog operators.

Figure 6-8: Syntax for the looping statements

6.6.1 Repeat and while statements

repeat executes a statement a fixed number of times. Evaluation of the expression
decides how many times a statement is executed.

while executes a statement until an expression becomes false. If the expression sta
false, the statement is not executed at all.

looping_statement ::=
repeat_statement

| while_statement
| for_statement
| analog_for_statement
| generate_statement
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The repeat and while expression must be evaluated once before the execution of
statement in order to determine the number of times, if any, the statements will be
executed. The syntax forrepeat andwhile statements is shown below:

Figure 6-9: Syntax for repeat and while statements

6.6.2 For statements

Thefor  statement is a looping construct that controls execution of its associated
statement(s) using an index variable. If the associated statement is ananalog_statement,
then the control mechanism must consist ofgenvar_assignments andgenvar_expressions to
adhere to the restrictions associated with the use of analog operators. If the assoc
statements are notanalog_statements, thefor  statement may use procedural assignment
and expressions, including genvar_expressions.

Thefor statement controls execution of its associated statement(s) by a three-step
process, as follows:

1. executes an assignment normally used to initialize an integer that controls
number of loops executed

2. evaluates an expression—if the result is zero, the for-loop exits, and if it is 
zero, the for-loop executes its associated statement(s) and then perform st

3. executes an assignment normally used to modify the value of the loop-con
variable, then repeats step 2 above.

The following shows the syntax for the two forms of thefor  statements:

Figure 6-10: Syntax for the for statements

repeat_statement ::=
repeat (expression ) statement

while_statement ::=
while ( expression ) statement

for_statement ::=
for (  procedural_assignment; expression;

procedural_assignment ) statement

analog_for_statment ::=
for ( genvar_assignment ; genvar_expression ;

genvar_assignment) analog_statement
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Analog operators are not allowed in therepeat, while andfor looping statements. They
are allowed inanalog_for andgenerate statements.

Theanalog_forstatements are syntactically equivalent to thefor statements except that
associated statement is also an analog statement (which contains analog operation
analog statement puts the additional restriction upon the procedural assignment a
conditional expressions of the for loop such that they be statically evaluatable. Ve
AMS HDL provides genvar-derived expressions for this purpose.

Example:

module genvarexp(out, dt);
parameter integer width = 1;
output out;
input  dt[1:width];
electrical out;
electrical dt[1:width];
integer i;
genvar k;
real tmp;

analog begin
tmp = 0.0;
for  (k = 1; k <= width; k = k + 1)begin

tmp = tmp + V(dt[k]);
V(out) <+ddt(V(dt[k]));

end
end

endmodule

See the discussion in section 4.4.1 regarding additional information on restrictions o
usage of analog operators.

6.7 Events

The analog behavior of a component can be controlled using events. The events ha
following characteristics:

1. events have no time duration

2. events can be triggered and detected in different parts of the behavioral m

3. events do not block the execution of an analog block

4. events can be detected using@ operator

5. events do not hold any data
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Threre are both digital and analog events. There are two types of analog events -global
events (6.7.4) andmonitored events(6.7.5). Null arguments are not allowed in analog
events.

6.7.1 Event detection

Analog event detection consist of an event expression followed by a procedural
statement. It takes the form:

Figure 6-11: Syntax for event detection

The procedural statement following the event expression is executed whenever the
described by the expression changes. The analog event detection is non-blocking
meaning that the execution of the procedural statement is skipped unless the analog
has occurred. The event expression consists of one or more signal names, global e
or monitored events separated byor operator.

The parenthesis around the event expression are required.

6.7.2 Event OR operator

The "OR-ing" of any number of events can be expressed such that the occurrence o
one of the events trigger the execution of the procedural statement that follows it.
keywordor is used as an event or operator.

For example,

analog begin
@(initial_step or cross(V(smpl)-2.5,+1))begin

vout = (V(in) > 2.5);
end
V(out) <+ vout;

end

Here,initial_step is a global event andcross() returns a monitored event. The variabl
vout is set to0 or 1 whenever one of the two events occur.

event_controlled_statement ::=
@ (event_expression) statement

event_expression ::=
 simple_event [or event_expression ]

simple_event ::=
 global_event
| event_function
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6.7.3 Event Triggered Statements

The following two restrictions apply to the statements evaluated as a result of an e
being triggered.

• The statement can not have expressions that use analog operators. These
statements can not maintain their internal state. This is because they are exe
intermittently, only when the corresponding event is triggered.

• The statement can not be a contribution statement because it could genera
discontinuity in analog signals.

6.7.4 Global events

The global events are generated by the simulator at various stages of the simulation
user model can not generate these events. These events are detected by using th
of the global event in an event expression with the @ operator.

The global events are pre-defined in Verilog-AMS HDL. These events can not be
redefined in a model.

The following are pre-defined global events:

Figure 6-12: Global events

The initial_step andfinal_stepgenerate global events on the first and the last point
an analysis respectively. They are useful when performing actions that should only o
at the beginning or the end of an analysis. Both global events can take optional
arguments, consisting of an analysis list for which the global event is active. For
example,

@(initial_step(“ac”, “dc”)) // active for dc and ac only
@(initial_step(“tran”)) // active for transient only

Table 6-1 describes the return value ofinital_stepandfinal_stepfor standard analysis. Each
column shows the return on event status. A status of1 represents Yes and0 represents
No. A Verilog-AMS simulator can use any or all of these typical analysis types.

global_event ::=
initial_step [ ( analysis_list ) ]

| final_step [ ( analysis_list ) ]

analysis_list ::=
 analysis_name {, analysis_name }

analysis_name ::=
" analysis_identifier "
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Additional analysis names can also be used as necessary for specific implementa
(See section 4.5.1 for further details.)

The following example measures the bit-error rate of a signal and prints the result a
end of the simulation.

module bitErrorRate (in, ref) ;
input  in, ref ;
electrical in, ref ;
parameter real period=1, thresh=0.5 ;
integer bits, errors ;

analog begin
@(initial_step) begin

bits = 0 ;
errors = 0 ;

end

@(timer (0, period))begin
if  ((V(in) > thresh) != (V(ref) > thresh))

errors = errors + 1 ;
bits = bits + 1 ;

end

Table 6-1 Return Values for inital_step and final_step

Analysisa

a. pX designates analysis point X, X = 1 to N; OP desginates the Operating Point.

DC TRAN AC NOISE

p1 p2  pN OP p1  pN OP p1  pN OP p1  pN

initial_step() 1   0    0 1    0    0 1    0    0 1    0    0

initial_step("ac") 0   0    0 0    0    0 1    0    0 0    0    0

initial_step("noise") 0   0    0 0    0    0 0    0    0 1    0    0

initial_step("tran") 0   0    0 1    0    0 0    0    0 0    0    0

initial_step("dc") 1   0    0 0    0    0 0    0    0 0    0    0

initial_step(unknown) 0   0    0 0    0    0 0    0    0 0    0    0

final_step() 0   0    1 0    0    1 0    0    1 0    0    1

final_step("ac") 0   0    0 0    0    0 0    0    1 0    0    0

final_step("noise") 0   0    0 0    0    0 0    0    0 0    0    1

final_step("tran") 0   0    0 0    0    1 0    0    0 0    0    0

final_step("dc") 0   0    1 0    0    0 0    0    0 0    0    0

final_step(unknown) 0   0    0 0    0    0 0    0    0 0    0    0
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@(final_step)
$strobe("bit error rate = %f%%", 100.0 * errors / bits ) ;

end
endmodule

Theinitial_step andfinal_stepevents take a list of quoted strings as optional argumen
The strings are compared to the name of the analysis being run. If any string matche
name of the current analysis name, then the simulator generates an event on the 
point and the last point of that particular analysis, respectively.

If no analysis list is specified, then the global event is only active during a transien
analysis. This is the default case. During a transient analysis theinitial_step global event
is active during the solution of the first timepoint (or initial DC analysis). Similarly t
final_step global event is active during the solution of the last timepoint of a transi
analysis.

6.7.5 Monitored events

The monitored events are detected using event functions with the@ operator. The
triggering of the monitored event is implicit due to change in signals, simulation time
other runtime conditions.

Figure 6-13: Monitored events

6.7.5.1 Cross Function

Thecross function is used for generating a monitored analog event to detect thres
crossings in analog signals. Thecross function generates events when the expressio
crosses zero in the specified direction. In addition,cross controls the timestep to
accurately resolve the crossing.

The general form is

cross (expression [, direction [, time_tol [, expression_tol ] ] ]) ;

whereexpression is required, anddirection, time_tol, andexpression_tol are optional.
All arguments are real expressions, exceptdirection(which is an integer expression). If
the tolerances are not defined, then the tool (e.g., the simulator) sets them. If eithe
both tolerances are defined, then the direction shall also be defined.

Thedirectionindicator can only evaluate to +1, -1, or 0. If it is set to 0 or is not specifie
the event and timestep control occur on both positive and negative crossings of th
signal. Ifdirectionis +1 (or -1), the event and timestep control only occurs on rising ed

event_function ::=
 cross_function
| timer_function
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(falling edge) transitions of the signal. For any other transitions of the signal, the c
function does not generate an event.

The definition ofexpression_tolandtime_tolare shown in Figure 6-14. They represen
the maximum allowable error between the estimated crossing point and the true cro
point.

Figure 6-14: Relationship between time tolerance in expression  tolerance

If expression_tolis defined, thetime_tolmust also be defined and both tolerances mu
be satisfied at the crossing.

The following description of a sample-and-hold illustrates how thecrossfunction might
be used.

module sh (in, out, smpl) ;
output out ;
input  in, smpl ;
electrical in, out, smpl ;
real state ;

analog begin
@(cross(V(smpl) - 2.5, +1))

state = V(in) ;
V(out) <+ transition(state, 0, 10n) ;

end
endmodule

The cross function maintains internal state and has the same restrictions as analo
operators. In particular, it must not be used inside a conditional statement (if  andcase)
unless the conditional expression is a genvar expression. In addition,crossis not allowed
in the repeat, while, and while iteration statements. It is allowed in theanalog_for
statements

Solution
Points expression_tol

time_tol
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6.7.5.2 Timer Function

Thetimer  function is used to generate analog events to detect specific points in tim

The general form is

timer  ( start_time [ , period [ , Timetol ] ] ) ;

wherestart_timeis required;periodandTimetolare optional arguments. All arguments
are real expressions.Timetolis set by the simulator to provide adequate resolution.

Thetimer  function schedules an event that occurs at an absolute time (as specifie
start_time). The analog simulator places a time point withinTimetolof an event. At that
time point, the event evaluates toTrue.

If Timetolis not specified, the default time point is at, or just beyond, the time of th
event. Ifperiod is specified as greater than0 , then the timer function schedules
subsequent events at multiples ofperiod.

A pseudo-random bit stream generator is an example how the timer function migh
used.

module bitStream (out) ;
output out ;
electrical out ;
parameter period = 1.0 ;
integer x ;

analog begin
@(timer (0, period))

x = $random + 0.5 ;
V(out) <+ transition( x, 0.0, period/100.0 ) ;

end
endmodule

6.8 Announcing Discontinuity

Thediscontinuity function is used to give hints to the simulator about the behavior
the module so that it can control the simulation algorithms to get accurate results 
exceptional situations. It does not directly specify the behavior of the module. The
discontinuity function should be executed whenever the analog behavior changes
discontinuously.

The general form is

discontinuity();

Because discontinuous behavior can cause convergence problems, discontinuity s
be avoided whenever possible.

The filter functions (transition , slew, laplace, etc.) are provided to smooth
discontinuous behavior. However, in some cases it is not possible to implement th
desired functionality using these filters. In this case,discontinuity function should be
executed when the signal behavior changes abruptly.
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Discontinuity created by switch branches and built-in system functions, such as
transition  andslew do not need to be announced.

The following example uses the discontinuity function to model a relay.

module relay (c1, c2, pin, nin) ;
inout c1, c2 ;
input  pin, nin ;
electrical c1, c2, pin, nin ;
parameter real r=1 ;

analog begin
@(cross(V(pin,nin))) discontinuity() ;
if  (V(pin,nin) >= 0)

I(c1,c2)<+ V(c1,c2)/r;
else

I(c1,c2)<+ 0 ;
end

endmodule

In this example,cross function controls the time step so that the time when the rela
changes position is accurately resolved. It also triggers the discontinuity function t
causes the simulator to react properly to the discontinuity. This would have been han
automatically if the type of the branch (c1,c2) had been switched between voltage
current.

Another example is a source that generates a triangular wave. In this case, neithe
model nor the waveforms generated by the model are discontinuous. Rather, the
waveform generated is piecewise linear with discontinuous slope. If the simulator 
aware of the abrupt change in slope, it can adapt to eliminate problems that resul
the discontinuous slope (typically changing to a first order integration method).

module triangle(out);
output out;
voltage out;
parameter real period = 10.0, amplitude = 1.0;
integer slope;
real offset;

analog begin
@(timer (0, period))begin

slope = +1;
offset =$realtime;
discontinuity();

end
@(timer (period/2, period))begin

slope = -1 ;
offset =$realtime;
discontinuity();

end
V(out) <+ amplitude*slope*

(4*($realtime - offset)/period - 1);
end

endmodule
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 Finally, here is a case where timer function is used without using adiscontinuity
function. In this case, the event generated by thetimer  function indicates that a
measurement should be printed, but that neither the model nor the waveforms co
discontinuity.

module sampler (in) ;
input  in ;
voltage in ;
parameter real period = 10.0 ;

analog @(timer (0, period))
$strobe("%g\t%g",$realtime, V(in)) ;

endmodule

6.9 Time related functions

There are two functions,bound_step andlast_crossing, related to simulation time.

6.9.1 Bounding the time step

Thebound_stepfunction puts a bound on the next time step. It does not specify exa
what the next time step should be, but it bounds how far the next time point can be
the present time point. The function takes the maximum time step as an argument. It
not return a value.

The general form is

bound_step (expression ) ;

whereexpression is a required argument and represents the maximum timestep the
simulator can advance.

The example below implements a sinusoidal voltage source and uses the bound_
function to assure that the simulator faithfully follows the output signal (it is forcing
points per cycle).

module vsine(out);
output out;
voltage out;
parameter real freq=1.0, ampl=1.0, offset=0.0;

analog begin
V(out) <+ ampl*sin(2.0*‘M_PI *freq*$realtime) + offset;
bound_step(0.05/freq);

end
endmodule
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Section 7

Mixed-Signal

This Section is a work-in-progress!

7.1 Fundamentals

7.1.1 Domains

7.1.2 Contexts

7.1.3 Analog and Digital Disciplines

7.1.4 Nets, Nodes, and Signals

7.2 Discipline Resolution and Connection Module Insertion

7.2.1 Discipline Resolution

In some cases incompatible disciplines may appear at the high and low connectio
port but both may be in the same domain. That is they may both be continuous
disciplines, or both discrete-time disciplines. In this case no connection module ma
needed, but we may wish the two segments to be treated as a single segment wit
one discipline. In this case the following form of the connect statement is used:

connectdiscipline_listusing discipline ;

where the disciplines in the discipline list are the disciplines which may be consolid
and the final discipline is the discipline to which they resolve.

7.2.2 Resolution of Discrete-time Disciplines

Signals and ports of discrete-time disciplines must obey the rules imposed by Veril
on such connections.
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nets

lock.
In addition the real-valued nets cannot be connected to scalar or vector bit-valued
without a connection module.

7.3 Behavioral Interaction

• Verilog-AMS has a separate block for defining analog behavior inside a module.

q Analog behavior can only be described inside of the analog block.

q Analog functions can be created but only used inside of the analog block

q There can be only one analog block per module.
• In general digital behavioral is defined in the initial/always blocks and analog in the analog b

q All three types of blocks can appear in the same module.
• Read operations of continuous-time and discrete-time signals are allowed from any context
• Write operations of:

q continuous-time signals are only allowed from inside an analog construct.

q discrete-time signals are allowed from any context outside of an analog construct.

Verilog-AMS provides ways to :

• Access analog signals from a digital block
• Access digital signals from an analog block
• Allow a analog event to effect a digital block
• Allow a digital event to effect a analog block
• Use the same variable in both the analog and digital blocks

Analog Signal Appearing in an Digital Expression

...

reg clock;

real r;

electrical x;

always @(posedge clock) begin

r = V(x);

end
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Digital Signal Appearing in an Analog Expression

reg d;

electrical x;

analog begin

     if  (d == 0)

          V(x)  <+ 0.0;

     else

          V(x)  <+ 3.0;

end

Analog Event Appearing in an Digital Event Control

electrical x;

reg d;

integer i;

always @(cross(V(x) - 4.5, 1)) begin

     i = d;

end

Digital Event Appearing in an Analog Event Control

real r;

reg d;

electrical x, y;

analog begin

     @(posedge d or cross(V(y), 1))

          r = V(x);

     end

Common variables in both the analog and digital blocks

• Variables can be read from any context
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tible
• Variables can only be written to by one context

q This context defines the owner or what type of variable it is, analog or digital

real vth;

integer cm;

always @(cross(V(in) - vth, 1 ))

  cm=1b1;

always @(cross(V(in) - vth, -1))

  cm=1b0;

analog begin

  vth  =  (V(vcc) - V(vee)) / 2   + V(vee);

  v(out) <+ transition( ((cm==1) ? 5.0 : 0.0 ), 10n, 5n, 5n) ;

end

7.3.1 Synchronous

7.3.1.1 Events and Event Controls

7.3.2 Asynchronous

7.4 Connect Statement and Connection Module Semantics

Theconnect statement performs the following functions.

• defines rules for the auto-insertion of connection modules between incompa
disciplines (section 7.5).

• supports manual insertion of a connection module.

• defines the rules for incompatible discipline resolution (section 7.2.1).

• supports back-annotation of parasitics(section 7.6).

Theconnect statement has the following syntax.
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Figure 7-1: Syntax for connect statement

The first two forms of theconnectstatement listed above deal with automatic insertion
connection modules between incompatible disciplines. The third form is use
manually insert a connection module. The fourth form is used for discipline resolu
and the last deals with back annotation of parasitic information.

For convenience we will refer to the various forms of the connect statement by
following names:

UNIDIRECTIONAL CONNECT STATEMENT : connect  discipline_identifier1to
discipline_identifier2 module_identifier attributes ;

In this formdiscipline_identifier1 is referred to as thesourceanddiscipline_identifier2 is
referred to as thesink.

BIDIRECTIONAL CONNECT STATEMENT : connect  discipline_identifierwith
discipline_identifier module_identifier attributes ;

CONNECT MODULE DECLARATION : connect module_identifier ;

RESOLUTION CONNECT STATEMENT : connect  discipline_list using discipline_identifier
module_identifier attributes ;

PARASITIC CONNECT STATEMENT : connect module_identifier( port_list) signal_path ;

connect_statement ::=
connect discipline_identifierto discipline_identifier
module_identifier attributes;

| connect discipline_identifierwith
discipline_identifiermodule_identifier attributes;

| connect module_identifier;
| connect discipline_list usingdiscipline_identifier

module_identifier attributes;
| connect module_identifier( port_list) signal_path;

attributes ::=
/* empty */

| #( attribute_list)
attribute_list ::=

attribute
| attribute_list, attribute

attribute ::=
.parameter_identifier( parameter_value)

| .connect_mode ( conn_mode)
conn_mode ::=

split | merged
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7.5 Automatic Insertion of Connection Modules

Automatic insertion of connection modules is performed when signals and ports
discrete time domain and continuous time domain disciplines are connected
connection module defines the conversion between these different disciplines.

An instance of the connection module will be inserted across any port that matche
rule specified by aconnectstatement. Rules for matching connect statements with p
(stated in detail later) take into account the port direction, and the disciplines o
signals connected to the port.

For example,

module dig_inv(in, out);
input  in;
output out;
logic in, out;

always begin
out = #10 ~in;

end

endmodule

module analog_inv(in, out);
input  in;
output out;
electrical in, out;
parameter real vth =2.5;

analog begin
if  (V(in) > vth))

outval = 0;
else

outval = 5 ;
V(out) <+ transition(outval);

end

endmodule

module ring;

dig_inv d1 (n1, n2);
dig_inv d2 (n2, n3);
analog_inv a3 (n3, n1);

endmodule

module elect_to_logic(el,cm);
input  el;
reg cm;
electrical el;
logic cm;
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always
@(cross(V(el) - 2.5, 1)

cm = 1;

always
@(cross(V(el) - 2.5, -1)

cm = 0;

endmodule

module logic_to_elect(cm,el);
input  cm;
output el;
logic cm;
electrical el;

analog
V(el) <+ transition ((cm == 1) ? 5.0 : 0.0);

endmodule

connect electricalto logic elect_to_logic;

connect logic to electrical logic_to_elect;

Eachconnectstatement designates a module to be a connection module. In the exa
above two modules,elect_to_logicand logic_to_electare specified as the connectio
modules to be automatically inserted whenever a signal and a module port of discip
electrical andlogic are connected.

For example, moduleelect_to_logicwill convert signals on portout of instancea3to portin
of instanced1. The modulelogic_to_electwill convert the signal on portout of instanced2

to portin of instancea3.

7.5.1 Connection Module Selection and Insertion

The selection of a connection module depends upon the disciplines of all the port
signals connected together. It is, therefore, a post elaboration operation. This is be
the signal connected to a port is only known when the module in which the po
declared has been instantiated.

7.5.1.1 Signal Segmentation

After a connection module has been selected it cannot be inserted until we dete
whether there should be one connection module per port, or one connection modu
all the ports on a signal that match a givenconnectstatement. Inserting multiple copies o
the same connection module on one signal (i.e. between the signal and the multiple
will have the effect of creating distinct segments of the signal which are of the s
discipline.
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This segmentation of the signal that connects ports is only performed in the ca
digital ports (i.e. ports with discrete-time domain or digital discipline). It is assumed
for analog (or continuous-time domain) disciplines it is never desirable to segmen
signal between the ports.That is, there should never be more than one analog
representing a signal.

However it may be desirable for the simulators internal representation of the sign
consist of various separate digital segments each with its own connection module
example, this is useful to model the loading effect of each individual digital port on
analog signal or node.
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Figure 7-2: Signal segmentation by connection modules
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7.5.1.2 Connect_mode Attribute

An attribute is provided for theconnectstatement to direct the segmentation of the sign
which may occur while inserting a connection module. If segmentation is desired th
may be specified in theconnectstatement using the attributeconnect_mode. This attribute
can take one of three predefined values --split or merged.It has a default value ofmerged.

This attribute applies when there is more than one port on a signal for which theconnect

statement applies, and when those ports have a digital discipline. The key
connect_modeindicates how input, output or inout ports of the given discipline should
combined for the purpose of inserting connection modules.

For example,

connect electricalto logic elect_to_logic #(.connect_mode(split));

This connectstatement specifies a module,elect_to_logic,will be inserted across a module
port

• if an input port haslogic discipline and the signal connecting to the port has
electrical discipline.

• if an output port has electrical discipline and the signal connecting to the port
logic discipline.

If there is more than one such input port connected at a node, then settingconnect_mode

attribute tosplit requires that there be one connection module for each port, that conv
between signal discipline and the port discipline. In this way the signal connecting to
ports is segmented by the insertion of one connection module for each port.
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Figure 7-3: Connect module insertion with Signal Segmentation

In figure 7-3 the connections of anelectricalsignal tottl output ports results in a distinc
instance of thed2a connection module being inserted for each output port. This
mandated by theconnect_modeattribute set tosplit.

Connection of theelectricalsignal tottl input ports results in a single instance of thea2d

connection module being inserted between theelectricalsignal and all thettl input ports.
This is mandated by theconnect_modeattribute set tomerged.This behavior is also seen fo
ttl inout ports which has aconnect_mode attribute set tomerged.

TTL

inputs

outputs

inouts

TTL

inputs

outputs

inouts

electrical

connectttl to electrical d2a #(.connect_mode(split));

connectelectrical to ttl  a2d #(.connect_mode(merged));

connectelectrical with   ttl  bidir #(.connect_mode(merged));

a2d

d2a

d2a

d2a

d2a

bidir
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For example:

connect electricalto cmos02u cmosA2d #(.r(30k),
.connect_mode(split));

performs three functions:

1. Connect an instance ofcmosA2dmodule between a signal withelectricaldiscipline
and the input port withcmos02u discipline, or an output port withelectrical

discipline and the signal withcmos02u discipline.

2. Set the value of the parameterr to 30k.

3. Use one module instance for each input port.

If there are many output ports for which this rule applies, then by definition there wil
no segmentation of the signal between these ports, since the ports have disciplineelectrical

(an analog discipline).

Another example:

connect electricalto cmos04u cmosA2d #(.r(15k),
.connect_mode(merged));

1. Connect an instance ofcmosA2d module between a signal with electrical
discipline and an input port withcmos04u discipline, or an output port with
electrical discipline and a signal withcmos4u discipline.

2. Set the value of the parameterr to 15k.

3. Use one module instance regardless of the number of ports.

7.5.1.3 Attribute Merged

The other possible value for theconnect_modeattribute ismerged. This value for the
attribute instructs the simulator to try to group all ports (whether they are input, ou
or inout) and to have just one connector module for all, provided that the module i
same for all.

The example which follows illustrates the effect of themergedattribute. Connection of
theelectricalsignal tottl inout ports andttl input ports results in a single connector modul
bidir, inserted between the ports and the electrical signal. The ttl output ports are me
but with a different connection module which means that there is one connector mo
inserted between the electrical signal and all of the ttl output ports.
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Figure 7-4: Connector insertion with connect_mode attribute merged

7.5.2 Internal Representation, Driver Receiver Segregation

If the hierarchical segments of a signal are all digital, or all analog then the signal is
a mixed signal and the internal representation of the signal will not differ from that
purely digital or an analog signal.

If, on the other hand, the signal has both analog and digital segments in its hierarchy
it is a mixed signal. In this case appropriate conversion elements will be inserted, e
manually or automatically.

TTL

inputs

outputs

inouts

TTL

inputs

outputs

inouts

electrical

connect ttl to electrical  d2a #(.connect_mode(merged));

connectelectricalto  ttl bidir#(.connect_mode(merged));

connect ttl with electrical  bidir #(.connect_mode(merged));

bidir

d2a
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• All the analog segments of a mixed signal are representations of a single an
node.

• Each of the noncontiguous digital segments of a signal will be represented
internally as a separate digital signal, with its own state.

7.5.2.1 Driver-Receiver Segregation

In the digital domain signals may have drivers and receivers. A driver make
contribution to the state of the signal. A receiver accesses, or reads, the state of the
In a pure digital net, i.e. one without an analog segment, the simulation kernel res
the values of the drivers of a signal, and when there is a change in state it propaga
new value to the receivers by means of an event.

In the case of a mixed net, that is one with digital segments and an analog segme
may not want the digital simulation kernel to propagate new values directly from dri
to receivers, but, to propagate the change to the analog simulation kernel which ca
detect a threshold crossing and then propagate the change in state back to the
kernel. This, among other things, allows the simulation to account for rise and fall ti
caused by analog parasitics.

Within digital segments of a mixed-signal net, drivers and receivers of ordinary mod
may be segregated, so that transitions are not propagated directly from drive
receivers, but propagate through the analog domain.

The drivers and receivers of connection modules will be oppositely segregated. Th
the connection module drivers will be grouped with the ordinary module receivers
the ordinary module drivers will be grouped with the connection module receivers

Thus digital transitions are propagated from drivers to receivers by way of ana
through the connection module instances.
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Figure 7-5: Driver-Receiver Segregation in Modules with Bidirectional ports
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Figure 7-6: Driver-Receiver Segregation in modules with Unidirectional ports

7.5.3 Rules for Driver/Receiver Segregation and
Connection Module Selection and Insertion

Driver/receiver segregation and connection module insertion is a post elaboration
operation. It depends on a complete hierarchical examination of each signal in the
design, that is, an examination of the signal in all the contexts through which it pa
If the complete hierarchy of a signal is digital, that is, the signal has a digital discip
in all contexts through which is passes, then it is a digital signal rather than a mixe
signal. Similarly, if the complete hierarchy of a signal is analog, then it is an analo
signal rather than a mixed signal. Rules for driver/receiver segregation and conne
module insertion apply only to mixed signals, that is, to signals which have an ana

analog

digital

digital

analog

output port

output port

output port

drivers

drivers

receivers

receivers

analog

digital

drivers

drivers

connection receiver

Hierarchical Definition Internal Representation

connection driver

output port

digital

receivers

receivers
Version 1.4 Verilog-AMS Language Reference Manual 7-16



Automatic Insertion of Connection Modules Mixed-Signal

line
nal in
nce

l in a
ted
hich

the
her is
le as
pper

less

gital
turn,

ort
one

line
ower

rt
line
er
ct

ent
discipline in one or more of the contexts through which they pass, and a digital discip
in one or more of the contexts. In this case context refers to the appearance of a sig
a particular module instance. For a particular signal we will refer to a module insta
as a digital context if the signal has a digital discipline in that module or an analog
context if the signal has an analog discipline. We refer to the appearance of a signa
particular context as a segment of the signal. In general a signal in a fully elabora
design consists of various segments some of which may be analog and some of w
may be digital. A port represents a connection between two segments of a signal 
context of one of the segments is an instantiated module and the context of the ot
the module which instantiates it. We refer to the segment in the instantiated modu
the lower or formal connection and the segment in the instantiating module as the u
or actual connection. A connection element is selected for each port to which one
connection is analog and the other digital.

 The following rules govern driver/receiver segregation and connection module
selection. These rules apply only to mixed signals.

1. A mixed signal is represented in the analog domain by a single node, regard
of how its analog contexts are distributed hierarchically.

2. Digital drivers of mixed signals are segregated from receivers so that the di
drivers contribute to the analog state of the signal and the analog state, in 
determines the value seen by the receivers.

3. A connection will be selected for a port only if one of the connections to the p
is digital and the other is analog. If this is the case then the port must match
(and only one) connection statement. The module named in the connection
statement is the one which will be selected for the port.

4. Input ports will match unidirectional connection statements. An input port
matches a unidirectional connection statement if the upper connection discip
of the port matches the source discipline in the connect statement and the l
connection discipline of the port matches the sink discipline in the connect
statement.

5. Output ports will match unidirectional connection statements. An output po
matches a unidirectional connection statement if the upper connection discip
of the port matches the sink discipline in the connect statement and the low
connection discipline of the port matches the source discipline in the conne
statement.

6. Inout ports will match bidirectional connection statements. The connection
statement will match the port if the two disciplines in the connection statem
are the same as the disciplines of the connections to the port.
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Once connection modules have been selected, they will be inserted according to 
connect_mode parameters in the pertinent connect statements. These rules apply
connection module insertion:

1. The connect mode of a port for which a connection module has been selected
be determined by the value of the connect_mode parameter of the connec
statement which was used to select the connection module.

2. The connection module for a port will be instantiated in the context of the po
upper connection.

3. All ports connecting to the same signal (upper connection) and having the s
connection module and having a connect_mode parameter of merged will s
a single instance of the selected connection module.

4. All other ports will have an instance of the selected connection module, tha
one connection module instance per port.

7.5.4 Instance Names for Auto-Inserted Instances

Parameters of auto-inserted connection instances may be set on an instance by in
basis with the use of thedefparamstatement. This necessitates predictable instance na
for the auto-inserted modules.

For the case of auto-inserted instances the following naming scheme is employ
unambiguously distinguish the connector modules. Depending on theconnect_mode
attribute the following name identifies the connector module.

1. Merged
In the merged case one or more ports have a given discipline at their botto
connection, call it BottomDiscipline, and a common signal, call it SigName,
another discipline, call it TopDiscipline, at their top connection. A single
connection module is placed between the top signal and the bottom signals
this case the instance name of the connection module is derived from the s
name and the bottom discipline,

                        <SigName><BottomDiscipline>

2. Split
In the split case one or more ports have a given discipline at their bottom
connection and a common signal, of another discipline, call it TopDiscipline
their top connection. One module instance is instantiated for each such po
this case the instance name of the connection module is,

                         <SigName><InstName><PortName>

where InstName and PortName are the local instance name of the port and its ins
respectively.
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7.6 Back Annotation of Parasitics

The following form of the connect statement is for back annotation of parasitics suc
SPF data extracted from the output of physical layout tools:

connect module_identifier ( port_list ) signal_path ;

The signal whose path is given is removed. The module whose name is give
instantiated with the same path name as the signal which was removed. The po
must contain all the ports to which the signal had been connected. This includes
which make out of context reference to the signal.

Connect statements of this form will not be executed until after the rest of the design
been elaborated. The named signal will be removed from each port in the port list
regardless of whether it was at the upper or lower connection of the port. The nam
module will be instantiated with same name as the removed signal and each of th
removed connections will be replaced by the signal at the lower connection of the
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corresponding port on the new instance.

Example

If the original circuit in the diagram above is expressed as follows:

module top();
   logic inn, outb, outn, inb, x;

   notif1 c1(x,inn,cn);
   buf c2(outb,x);
   not c3(outn,x);
   bufif1 c4(x,inb,cb);
endmodule

Then the following module could be used to backannotate parasitics:

Original Circuit

Circuit with Parasitics

c1

c2

c3

c4

c1

c2

c3

c4

x
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module backan(x1,x2,x3,x4)
   inout x1,x2,x3,x4;
   electrical x1,x2,x3,x4;

   resistor #(100) r1(x2,x3);
   voltage #(0.0) v1(x1,x2);
   voltage #(0.0) v2(x3,x4);
   capacitor #(0.000001)(x4,gnd):
endmodule

This would be done with the followingconnect statement:

connect backan (top.c1.out,top.c2.in,top.c3.in,top.c4.out) top.x;

The result is that the wiretop.x is removed and replaced with the modulebackan.

7.6.1 Port Names for Verilog Built-in Primitives

In the cases of instances of modules and instances of UDPs port names are well de
In these cases the port name is the name of the signal at the lower connection of th
in the case of built in primitives, however, Verilog-D does not define port names. I
thus necessary to define port names for the ports of built in primitives in Verilog-M

The following conventions will be used for naming Verilog Ports.

1. For N-input gates (and, nand, nor, or, xnor, xor)the output will be namedout, and the
inputs reading from left to right will bein1, in2, in3, etc.

2. For N-output gates (buf, not)The input will be namedin, and the outputs reading
from left to right will be namedout1, out2, out3, etc.

3. For 3 port MOS switches (nmos, pmos, rnmos, rpmos)the ports reading from left to
right will be namedsource, drain, gate.

4. For 4 port MOS switches (cmos, rcmos)the ports reading from left to right will be
namedsource, drain, ngate, pgate.

5. For bidirectional pass switches (tran, tranif1, tranif0, rtran, rtranif1, rtranif)the ports
reading from left to right will be namedsource, drain, gate.

6. For single port primitives (pullup, pulldown) the port will be namedout.

7.7 Driver Access Functions

Access to individual drivers is necessary for accurate implementation of connectio
modules (section 7.5). A driver of a signal is a process which assigns a value to th
signal, or a connection of the signal to an output port of a module instance or simula
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primitive. The driver access functions described here apply only to drivers found i
ordinary modules and not to those found in connection modules.

A signal may have a number of drivers and each driver may have a current value 
pending value. The current value is the current contribution of the driver to the reso
state of the signal and the pending value is the next scheduled contribution, if any, o
driver to the resolved state of the signal.

7.7.1 driver_update event

The status of drivers for a given signal can be monitored with a new event detecti
keyworddriver_update. It can be used in conjunction with the event detection operator@
to detect updates to any of the drivers of the signal. For example:

always @(driver_update clock)
statement;

will causestatement to execute any time a driver of the signalclock is updated. Here, an
update is defined as the addition of a new pending value to the driver. This is true
whether or not there is a change in the resolved value of the signal.

The functions described below can be used to access the information about the d
of a signal.

7.7.2 driver_count function

Thedriver_count function returns an integer representing the number of drivers
associated with the signal in question. The syntax is as follows:

Figure 7-7: Syntax for driver_count function

The drivers are arbitrarily numbered from 0 to N-1, where N is the total number of
drivers contributing to the signal value. For example, if this function returns a valu
then the signal has 5 drivers numbered from 0 to 4.

7.7.3 driver_active function

Thedriver_active functionreturns an integer index for each driver of the signal which
currently active. The syntax is as follows:

driver_count_function ::=
driver_count ( signal_name)
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Figure 7-8: Syntax for driver_active function

Each call to this function returns the index of the driver that is currently active. Repe
calls of this function will return the index of the active drivers in increasing order. Wh
the indices for all the active drivers at the current time have been returned, the nex
to this function will return -1. If this function is called after it has returned -1, it will cyc
through the active drivers again.

The returned value (driver index) may be used as the driver argument in any of th
following driver access tasks described below. The drivers are arbitrarily numbered
N-1, where N is the total number of drivers contributing to the signal value.

For example, if a the signal has 10 drivers, of which drivers numbered 3, 5, and 8
active currently then 8 successive calls to this function will return, in order, 3, 5, 8, -1
5, 8, -1.

7.7.4 driver_local function

Thedriver_local functionreturns an integer value that represents the index of the dri
if the calling process has a driver for the signal (active or inactive). The syntax is a
follows:

Figure 7-9: Syntax for driver_local function

If there is no driver for the signal in the local process, this function returns -1.

7.7.5 driver_state function

Thedriver_state functionreturns the current value contribution of a specific driver to th
state of the signal. The syntax is as follows:

driver_active_function ::=
driver_active ( signal_name)

driver_local_function ::=
driver_local ( signal_name)
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Figure 7-10: Syntax for driver_state function

Thedriver_indexvalue is an integer value between 0 and N-1, where N is the total num
of drivers contributing to the signal value. The state value is returned as 0, 1, x, or

7.7.6 driver_strength function

Thedriver_strength functionreturns the current strength contribution of a specific driv
to the strength of the signal. The syntax is as follows:

Figure 7-11: Syntax for driver_strength function

Thedriver_indexvalue is an integer value between 0 and N-1, where N is the total num
of drivers contributing to the signal value. The strength value is returned as an int
between 0 and 7.

7.7.7 driver_delay function

Thedriver_delay function returns the delay, from current simulation time, after whic
the pending state or strength becomes active. If there is no pending value on a sig
will return zero.The syntax is as follows:

Figure 7-12: Syntax for driver_delay function

Thedriver_indexvalue is an integer value between 0 and N-1, where N is the total num
of drivers contributing to the signal value.

driver_state_function ::=
driver_state ( signal_name, driver_index)

driver_strength_function ::=
driver_strength ( signal_name, driver_index)

driver_delay_function ::=
driver_delay ( signal_name, driver_index)
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The returned delay value is an integer.

7.7.8 driver_next_state function

Thedriver_next_state function returns the pending state of the driver, if there is one
there is no pending state it returns the current state.

Figure 7-13: Syntax for driver_next_state function

Thedriver_indexvalue is an integer value between 0 and N-1, where N is the total num
of drivers contributing to the signal value. The pending state value is returned as 0,
or z.

7.7.9 driver_next_strength function

Thedriver_next_strength functionreturns the strength associated with the pending st
of the driver, if there is one. If there is no pending state it returns the current stren

Figure 7-14: Syntax for driver_next_strength function

Thedriver_indexvalue is an integer value between 0 and N-1, where N is the total num
of drivers contributing to the signal value. The pending strength value is returned 
integer between 0 and 7.

driver_next_state_function ::=
driver_next_state ( signal_name, driver_index)

driver_next_strength_function ::=
driver_next_strength ( signal_name, driver_index)
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Section 8

Hierarchical Structures

Verilog-AMS HDL supports a hierarchical hardware description by allowing modules
be embedded within other modules. Higher-level modules create instances of low
level modules and communicate with them through input, output, and bidirectional p

To describe a hierarchy of modules, the user provides textual definitions of variou
modules. Each module definition stands alone; the definitions are not nested. State
within the module definitions create instances of other modules, thus describing th
hierarchy.

Verilog-AMS provides aconnectstatement to define the rules for automatic insertion
user defined modules to connect ports of incompatible disciplines.

8.1 Modules

A module definition is enclosed between the keywordsmodule andendmodule. The
identifier following the keywordmodule is the name of the module being defined. Th
optional list of ports specify an ordered list of the module’s ports. The order used ca
significant when instantiating the module (section 8.1.2). The identifiers in this list m
be declared in input, output, and inout declaration statements within the module
definition. The module items define what constitutes a module, and include many
different types of declarations and definitions. A module definition can have at most
analog block.

The keywordmacromodule can be used interchangably with the keywordmodule to
define a module. An implementation can choose to treat module definitions begin
with themacromodule keyword differently.
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Figure 8-1: Syntax for module

8.1.1 Top-level modules

Top-level modules are modules that are included in the source text but are not
instantiated, as described in section 8.1.2.

8.1.2 Module instantiation

Instantiation allows one module to incorporate a copy of another module into itsel
Module definitions do not nest. That is, one module definition does not contain the

module_declaration ::=
module_keywordmodule_identifier [ list_of_ports ];
[ module_items ]
endmodule

module_keyword ::=
module

| macromodule
list_of_ports ::=

( port { , port } )
port ::=

port_expression
| . port_identifier( [ port_expression ])

port_expression ::=
port_identifier

| port_identifier[ constant_expression]
| port_identifier[ constant_range]

constant_range ::=
msb_constant_expression : lsb_constant_expression

module_items ::=
{ module_item }

| analog_block
module_item ::=

module_item_declaration
| parameter_override
| module_instantiation

module_item_declaration ::=
parameter_declaration

| input_declaration
| output_declaration
| inout_declaration
| integer_declaration
| node_declaration
| real_declaration

parameter_override ::=
defparam list_of_param_assignments;
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of another module definition within itsmodule-endmodule keyword pair. A module
definition nests another module byinstantiating it. Themodule instantiation statement
creates one or more namedinstances of a defined module.

The following is the syntax for specifying instantiations of modules:

Figure 8-2: : Syntax for module instantiation

The instantiations of modules can contain a range specification. This allows an arra
instances to be created.

One or more module instances (identical copies of a module definition) can be spec
in a single module instantiation statement.

The list of module connections can be provided only for modules defined with ports.
parentheses, however, are always required. When a list of module connections is g
the first element in the list connects to the first port, the second to the second port
so on. See section 8.3 for a more detailed discussion of ports and port connection

module_instantiation ::=
module_identifier [ parameter_value_assignment ]
instance_list

parameter_value_assignment ::=
# ( ordered_param_override_list)

| # ( named_param_override_list)
ordered_param_override_list ::=

expression {, expression }
named_param_override_list ::=

named_param_override {, named_param_override }
named_param_override ::=

. parameter_identifier ( constant_expression)
instance_list ::=

module_instance {, module_instance };
module_instance ::=

name_of_instance( [ list_of_module_connections ])
name_of_instance ::=

module_instance_identifier [ range ]
list_of_module_connections ::=

ordered_port_connection {, ordered_port_connection }
| named_port_connection {, named_port_connection }

ordered_port_connection ::=
[ expression ]

named_port_connection ::=
. port_identifier( [ expression ])

range ::=
[ constant_expression: constant_expression]
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A connection can be a simple reference to a node identifier or a sub-range of a ve
node. The example below illustrates a comparator and an integrator (lower-level
modules) which are instantiated in sigma-delta A/D converter module (the higher-l
module).

The comparator instance C1 and the integrator instance I1 use named port connec
whereas the comparator instance C2 and the d2a (not described here) instance D
ordered port connection.

The integrator instance I1 overrides gain parameter positionally, whereas the d2a
instance D1 overrides width parameter by named association.

module comparator(cout, inp, inm);
output cout;
input  inp, inm;
electrical cout, inp, inm;
parameter real td = 1n, tr = 1n, tf = 1n;

analog begin
@cross(V(inp) - V(inm), 0)

V(cout)<+ transition((V(inp) > V(inm)) ? 1 : 0, td, tr, tf);
end
endmodule

module integrator(out, in);
output out;
input  in;
electrical in, out;
parameter real gain = 1.0;
parameter real ic = 0.0;

analog begin
V(out) <+ gain*idt(V(in), ic);

end
endmodule

module sigmadelta(out, ref, in);
output out;
input  ref, in;

comparator C1(.cout(aa0), .inp(in), .inm(aa2));
integrator #(1.0) I1(.out(aa1), .in(aa0));
comparator C2(out, aa1, ground);
d2a #(.width(1)) D1(aa2, ref, out); // A D/A converter

endmodule

in out

C1 C2I1

D1

aa1aa0

ground
aa2

ref
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8.2 Overriding module parameter values

When one module instantiates another module, it can alter the values of any param
declared within the instantiated module. There are three ways to alter parameter va
thedefparam statement, which allows assignment to parameters using their hierarchi
names,module instance parameter value assignment by order, which allows values to
be assigned in-line during module instantiation in the order of their declaration, an
module instance parameter value assignment by name, which allows values to be
assigned in-line during module instantiation by explicitly associating parameter na
with the overriding values.

8.2.1 Defparam statement

Using thedefparam statement, parameter values can be changed in any module insta
throughout the design using the hierarchical name of the parameter. See section
hierarchical names.

The expression on the right hand side of the defparam assignments must be a co
expression involving only constant numbers and references to parameters. The
referenced parameters (on the right hand side of the defparam) must be declared
same module as the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter va
override assignments together in one module.
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8.2.2 Module instance parameter value assignment by order

An alternative method for assigning values to parameters within module instances
supplies values for particular instances of a module to any parameters that have b
specified in the definition of that module.

The order of the assignments in module instance parameter value assignment mu
follow the order of declaration of the parameters within the module. It is not neces
to assign values to all of the parameters within a module when using this method.
However, it is not possible to skip over a parameter assignment. Therefore, to ass
values to a subset of the parameters declared within a module, the declarations o
parameters that make up this subset must precede the declarations of the remain
(optional) parameters. An alternative is to assign values to all of the parameters, bu
the default value (the same value assigned in the declaration of the parameter with
module definition) for those parameters that do not need new values.

Consider the following example, where the parameters within module instance mo
are changed during instantiation.

module tgate;
electrical io1,io2,control,control_bar;
mosn m1 (io1, io2, control);
mosp m2 (io1, io2, control_bar);
endmodule

module mosp (source,drain,gate);
parameter gate_length = 0.3e-6,

 gate_width = 4.0e-6;

spice_pmos #(.L(gate_length),.W(gate_width)) p(gate,source,drain);

endmodule

module mosn (source,drain,gate);
parameter gate_length = 0.3e-6,

 gate_width = 4.0e-6;

spice_nmos #(.L(gate_length),.W(gate_width)) n(gate,source,drain);

endmodule

module annotate;
defparam

tgate.m1.gate_width = 5e-6,
tgate.m2.gate_width = 10e-6;

endmodule
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8.2.3 Module instance parameter value assignment by name

The third method of overriding parameters for a module instance is an explicit
association between the name of the parameter and the new value being assigned
parameter. The name of the parameter must be preceded by a period (.) and must
name of a parameter in the definition of the module being instantiated. The overri
value for each parameter must be a constant expression and must be enclosed in
parenthesis (()). Only those parameters whole value is being overridden need
specification.

In the following example of instantiating a voltage-controlled oscillator, the parame
are specified on a named-association basis much they are for ports.

vco #(.centerFreq(5000), .convGain(1000)) vco1(lo_out, rf_in);

Here, the name of the instantiated vco module isvco1. ThecenterFreq parameter is
passed a value of 5000, and theconvGain parameter is passed a value of 1000. The
positional assignment mechanism for ports assignslo_outas the first node, andrf_in as
the second node ofvco1.

8.2.4 Parameter override precedence

If the value of a parameter is overridden using defparam statement as well as mo
instance parameter value assignments (see section 8.2.2 and section 8.2.3), the v
assignment specified by the defparam statement is retained and the other value
assignments are ignored.

If the value of a parameter is overridden using one of the three forms at different le
of module hierarchy, the value assignment done in the hierarchically highest level
module is retained and the other value assignments are ignored.

If the hierarchical relationship between the modules containing defparam stateme
cannot be determined, it must be reported as an error.

modulem;
voltage clk;
electrical out_a, in_a;
electrical out_b, in_b;

// create an instance and set parameters
mosp #(2e-6,1e-6) weakp(out_a, in_a, clk);
// create an instance leaving default values
mosp plainp(out_b, in_b, clk);
endmodule
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8.2.5 Parameter dependence

A parameter (for example, gate_cap) can be defined with an expression containin
another parameter (for example, gate_width or gate_length). Since gate_cap depe
the value of gate_width and gate_length, a modification of gate_width or gate_len
changes the value of gate_cap. For example, in the following parameter declaratio
update of gate_width , whether by defparam statement or in an instantiation state
for the module that defined these parameters, automatically updates gate_cap.

parameter
 gate_width = 0.3e-6,
 gate_length = 4.0e-6,
 gate_cap = gate_length * gate_width * ‘COX;

8.3 Ports

Ports provide a means of interconnecting instances of modules. For example, if a m
A instantiates module B, the ports of module B are associated with either the ports o
internal nodes of module A. The top-level module does not have ports, so every p
eventually associated with a node.

8.3.1 Port association

The syntax for a port association is given below. It is the completion of the syntax
presented in section 8.1.

Figure 8-3: Syntax for port

The port expression in the port definition can be one of the following:

– a simple node identifier
– a scalar member of a vector node or port declared within the module
– a sub-range of a vector node or port declared within the module

port ::=
port_expression

| . port_identifier( [ port_expression ])
port_expression ::=

port_identifier
| port_identifier[ constant_expression]
| port_identifier[ constant_range]

constant_range ::=
msb_constant_expression : lsb_constant_expression
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The two types of module port definitions cannot be mixed; the ports of a particular
module definition must all be defined by order or all by name. The port expression
optional because ports can be defined that do not connect to anything internal to 
module.

8.3.2 Port declarations

The type and direction of each port listed in the module definition’s list of ports are
declared in the body of the module.

8.3.2.1 Port type

The type of a port is declared by giving its discipline. If the type of a port is not declar
the port can only be used in a structural description (it can be passed to instances
modules, but cannot be accessed in a behavioral description).

Figure 8-4: Syntax for port type declarations

8.3.2.2 Port direction

The direction of a port can be specified asinput , output, or inout (bidirectional). If the
direction is specified as being an input port, then the module will only monitor the
signals at the port, and not modify them. That is, within the module the port can onl
passed into other modules as input ports and the signals on the ports can only be u
expressions, they cannot be used on the left side of a contribution statement. If th
direction is specified as being an output port, then the module will only affect the sig
at the port, but not be affected by them. Thus, the port can be passed to instances o
modules as output ports and the signals on the ports cannot be used in expressio
can be used on the left side of a contribution statement. Finally, ports that are dec
as being bidirectional are not subject to these restrictions. If the direction of the po
not specified, it is taken to be bidirectional. The syntax for port declarations is as follo

Figure 8-5: Syntax for port direction declarations

node_declaration ::=
discipline_identifier [ range ] list_node_identifiers;

list_node_identifiers ::=
node_identifier { , node_identifier }

input_declaration ::=input  [ range ]  list_of_port_identifiers;
output_declaration ::=output [ range ]  list_of_port_identifiers;
inout_declaration ::=inout [ range ] list_of_port_identifiers;
Version 1.4 Verilog-AMS Language Reference Manual 8-9
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A port can be declared in both a port type declaration and a port direction declaratio
a port is declared as a vector, the range specification between the two declaration
port must be identical.

Note: Implementations may limit maximum number of ports in a module definition, but will at least
256.

8.3.3 Real valued ports

Verilog-AMS supports ports that are declared to be real valued and have a discrete
discipline.

module sum(in1, in2, out);
input  in1, in2;
output out;
real in1, in2, out;
logic in1, in2;

always begin
out = in1 + in2;
end
endmodule

In a module instantiation a real valued port can only be bound to a real variable w
value may be assigned only from the digital context, or to another real valued port.
result of binding a real variable to a port is to make the variable visible in any contex
which the port is visible. Real valued ports are, therefore, subject to the same rule
usage as real variables. They also exhibit the same behavior. For example, assig
of a value to a real port will overwrite the existing value. Thus, if two processes atte
to assign different values to a real variable (either directly or through a port bound to
variable) at the same time the result is a race condition. There is no resolution of mu
drivers as with other signal types. One of the assignments will win, but, it can not 
predetermined. It is an error to modify the value of a real port which is declared as
input.

As with other discrete time ports (digital), a real valued port may be assigned a discip
for purposes of connection element insertion using connect statements. In this cas
connection module being inserted will have a real valued port of the same discipline
a discrete time port of some other discipline. Since it is illegal to connect the real va
port to anything other than a real variable or port, it does not make sense to apply
discipline which has been used to declare real ports or variables, to any other typ
object (wire, reg, etc.).
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8.3.4 Connecting module ports by ordered list

One method of making the connection between the ports listed in a module instanti
and the ports defined by the instantiated module is the ordered list—that is, the po
listed for the module instance must be in the same order as the ports listed in the m
definition.

8.3.5 Connecting module ports by name

The second way to connect module ports consists of explicitly linking the two names
each side of the connection—the name used in the module definition, followed by
name used in the instantiating module. This compound name is then placed in the l

module adc4 (out, rem, in);
output [3:0] out ; output rem;
input  in;
electrical [3:0] out;
electrical in, rem, rem_chain;

adc2 hi2 (out[3:2], rem_chain, in) ;
adc2 lo2 (out[1:0], rem, rem_chain) ;
endmodule

module adc2 (out, remainder, in);
output [1:0] out ; output remainder;
input  in;
electrical [1:0] out ;
electrical in, remainder, r;

adc hi1 (out[1], r, in) ;
adc lo1 (out[0], remainder, r) ;
endmodule

moduleadc (out, remainder, in);
output out, remainder;
input in;
electrical out, in, remainder;
integer d;

analog begin
d = (V(in) > 0.5) ;
V(out) <+ transition(d) ;
V(remainder)<+ 2.0 * V(in) ;
if  (d)

V(remainder)<+ -1.0 ;
end

endmodule
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module connections. The name of port must be the name specified in the module
definition. The name of port cannot be a bit select or a part select.

The port expression must be the name used by the instantiating module and can 
of the following:

– a simple node identifier
– a scalar member of a vector node or port declared within the module
– a sub-range of a vector node or port declared within the module
– a vector node formed as a result of the concatenation operator

The port expression is optional so that the instantiating module can document the
existence of the port without connecting it to anything. The parentheses are requi

The two types of module port connections can not be mixed; connections to the por
a particular module instance must be all by order or all by name.

Since these connections were made by port name, the order in which the connec
appear is irrelevant.

8.3.6 Port connection rules

The following rules govern the way module ports are declared and the way they a
interconnected.

8.3.6.1 Compatible discipline rule

All ports connected to a node must be compatible with each other as well as to th
discipline of the node. For discussion on compatible disciplines, see section 3.6.

module adc4 (out, rem, in);
input  in;
output [3:0] out; output rem;
electrical [3:0] out;
electrical in, rem, rem_chain;

adc2 hi (.in(in), .out(out[3:2]), .remainder(rem_chain)) ;
adc2 lo (.in(rem_chain), .out(out[1:0]), .remainder(rem)) ;
endmodule

module adc2 (out, in, remainder);
output [1:0] out; output remainder;
input  in;
electrical [1:0] out;
electrical in, remainder, r;

adc hi1 (out[1], r, in) ; // adc is same as defined in section 8.3.4
adc lo1 (out[0], remainder, r) ;
endmodule
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Ports of any discipline are compatible when connected to a ground node.

8.3.6.2 Matching size rule

A scalar port can be connected to a scalar node, and a vector port can be connecte
vector node or concatenated node expression of the matching width. In other words,
of the ports and nodes must match.

8.3.6.3 Resolving Discipline of Undeclared Interconnect Signal

 Verilog-AMS supports undeclared interconnect between module instances when
describing hierarchical structures. That is, a signal appearing in the connection lis
module instantiation need not appear in any port declaration or discipline declarat

• an undeclared net segment (signal) that connects to one or more ports tha
declared with adiscrete domain discipline resolves (inherits) to thatdiscrete

discipline.

• If the ports are of differentdiscretedomain disciplines then the resulting disciplin
is undetermined unless there is aconnect(section 7.4) statement to specify the
resulting discipline.

• If some or all of the ports are declared withcontinuousdomain disciplines then the
undeclared interconnect signal resolves to acontinuous domain discipline type.

8.3.7 Inheriting Port Natures

If a node is missing a nature, it will inherit that nature from any port that connects to
Typically such a situation occurs when

— a node is either implicitly or explicitly declared with an empty discipline.

— a conservative port connects to a node that is declared as a signal flow discip

— a signal-flow port with a potential nature connects to a signal-flow node decla
with a flow nature, or visa versa.

As additional ports connect to the same node, it is possible for conflicts to develop.
example, connecting either an electrical or a mechanical port to a node with empt
discipline results in no conflicts, but connecting both to the same node defined wit
empty discipline does result in a conflict.

At each node there may be many different values of the absolute toleranceabstol. This
may be because various ports connecting to the node have different, yet compatib
natures for either the potential, the flow, or both. Even if the natures are identical,
value ofabstolmay be overridden in the discipline of one or more of the ports. In su
cases, all of the absolute tolerances must be satisfied at the node. This leads to ap
the smallest tolerance value for all calculations involving such nodes.
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8.3.8 Multi-disciplinary example

The example below shows how an application that spans multiple disciplines can 
modeled in Verilog-AMS. The example models a DC-motor driven by a voltage sou

8.4 Hierarchical names

Every identifier in Verilog-AMS HDL description has a uniquehierarchical path name.
The hierarchy of modules and the definition of items such as named blocks within
modules define these names. The hierarchy of names can be viewed as a tree str

module motorckt();
parameter real freq=100;

electrical drive;
mechanical shaft;

motor m1 (drive,ground, shaft);
vsource #(.freq(freq), .ampl(1.0)) v1 (drive,ground);

endmodule

// vp: positive terminal [V,A]  vn: negative terminal [V,A]
// shaft:motor shaft [rad,Nm]
//
// INSTANCE parameters
// Km = motor constant [Vs/rad] Kf = flux constant  [Nm/A]
// j  = inertia factor [Nms^2/rad] D= drag (friction)  [Nms/rad]
// Rm = motor resistance [Ohms] Lm = motor inductance [H]
//
// A model of a DC motor driving a shaft

module motor(vp, vn, shaft);
inout vp, vn, shaft;
electrical vp, vn ;
mechanical shaft ;

parameter real Km = 4.5, Kf = 6.2;
parameter real j = .004, D = 0.1;
parameter real Rm = 5.0, Lm = .02;

analog begin
V(vp, vn)<+ Km*W(shaft) + Rm*I(vp, vn) +ddt(Lm*I(vp, vn));
T(shaft)<+ Kf*I(vp, vn) - D*W(shaft) -ddt(j*W(shaft));

end
endmodule
Version 1.4 Verilog-AMS Language Reference Manual 8-14
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where each module instance or a named begin-end block defines a new hierarchi
level, or scope, in a particular branch of the tree.

At the top of the name hierarchy are the names of modules of which no instances
been created. It is theroot of the hierarchy. Inside any module, each module instanc
and named begin-end block define a new branch of the hierarchy. Named blocks w
named blocks also create new branches.

Each node in the hierarchical name tree is treated as a separate scope with respe
identifiers. A particular identifier can be declared at most once in any scope.

Any named object can be referenced uniquely in its full form by concatenating the na
of the module instance or named blocks that contain it. The period character (.) is
to separate each of the names in the hierarchy. The complete path name to any o
starts at a top-level module. This path name can be used from any level in the descri
The first name in a path name can also be the top of a hierarchy that starts at the
where the path is being used.

Figure 8-6: : Hierarchy in a model

module samplehold (in, cntrl, out ); module amp(inp, inm, out) ;
input  in, cntrl ; input  inp, inm ;
output out ; output out ;
electrical in, cntrl, out ; electrical inp, inm, out ;
electrical store, sample ; parameter real gain=1e5;
parameter real vthresh = 0.0 ;
parameter real cap = 10e-9 ; analog begin

V(out) <+ gain*V(inp,inm) ;
amp op1 (in, sample, sample) ; end
amp op2(store, out, out) ; endmodule

analog begin
I(store)<+ cap *ddt(V(store)) ;
if  (V(cntrl) > vthresh)

V(store, sample)<+ 0 ;
else

I(store, sample)<+ 0 ;
end

endmodule

op2 op1

samplehold
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Figure 8-7: : Hierarchical path names in a model

From within an analog block, it is possible to use hierarchical name referencing to ac
signals on an external branch, but not external variables or parameters. When acce
external branches, a branch signal (its potential or flow) can be monitored (probed
with source branches, contributions can be made to the output signal. However,
contributing to an external switch branch is considered illegal.

It is illegal to indirectly assign to an external branch or contribute to an external bra
that has indirect branch assignment.

8.5 Scope rules

The following two elements define a new scope in Verilog-AMS HDL:

modules
named blocks

An identifier can be used to declare only one item within a scope. This rule means
illegal to declare two or more variables that have the same name, or to give an ins
the same name as the name of the node connected to its output.

If an identifier is referenced directly (without a hierarchical path) within a named blo
it must be declared either locally within the named block, or within a module, or nam
block that is higher in the same branch of the name tree that contains the named 
If it is declared locally, then the local item must be used; if not, the search continu
upward until an item by that name is found or until a module boundary is encounte
The search can cross named block boundaries, but not module boundaries.

Because of the upward searching, path names that are not strictly on a downward
can be used.

samplehold in, cntrl, out, sample, store, vthresh, cap
op1 op1.inp, op1.inm, op1.out, op1.gain
op2 op2.inp, op2.inm, op2.out, op2.gain
Version 1.4 Verilog-AMS Language Reference Manual 8-16
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Section 22

Using VPI routines

Sections 22 and 23 specify the Verilog Procedural Interface (VPI) for the Verilog HDL. This section describes
the VPI routines are used, andSection 23 defines each of the routines in alphabetical order.

22.1 The VPI interface

The VPI interface provides routines that allow Verilog product users to access information contained in a V
design, and that allow facilities to interact dynamically with a software product. Applications of the VPI interfac
include delay calculators and annotators, connecting a Verilog simulator with other simulation and CAE system
customized debugging tasks.

The functions of the VPI interface can be grouped into two main areas:

— Dynamic software product interaction using VPI callbacks

— Access to Verilog HDL objects and simulation specific objects

22.1.1 VPI callbacks

Dynamic software product interaction shall be accomplished with a registered callback mechanism. VPI ca
shall allow a user to request that a Verilog HDL software product, such as a logic simulator, call a user-d
application when a specific activity occurs. For example, the user can request that the user application my_m
be called when a particular net changes value, or that my_cleanup() be called when the software product ex
has completed.

The VPI callback facility shall provide the user with the means to interact dynamically with a software pro
detecting the occurrence of value changes, advancement of time, end of simulation, etc. This feature
applications such as integration with other simulation systems, specialized timing checks, complex deb
features, etc.

The reasons for which callbacks shall be provided can be separated into four categories:

— Simulation event (e.g., a value change on a net or a behavioral statement execution)

— Simulation time (e.g., the end of a time queue or after certain amount of time)

— Simulator action/feature (e.g., the end of compile, end of simulation, restart, or enter interactive mode)

— User-defined system task or function execution

VPI callbacks shall be registered by the user with the functionsvpi_register_cb() andvpi_register_systf(). These
routines indicate the specific reason for the callback, the application to be called, and what system and user d
be passed to the callback application when the callback occurs. A facility is also provided to call the ca
functions when a Verilog HDL product is first invoked. A primary use of this facility shall be for registration of u
defined system tasks and functions.
Section 22 22-1
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22.1.2 VPI access to Verilog HDL objects and simulation objects

Accessible Verilog HDL objects and simulation objects and their relationships and properties are described usi
model diagrams. These diagrams are presented in 22.5. The data diagrams indicate the routines and constan
required to access and manipulate objects within an application environment. An associated set of routines to
these objects is defined inSection 23.

The VPI interface also includes a set of utility routines for functions such as handle comparison, file handlin
redirected printing, which are described in 23.12.

VPI routines provide access to objects in aninstantiatedVerilog design. An instantiated design is one where ea
instance of an object is uniquely accessible. For instance, if a module m contains wire w and is instantiated t
m1 and m2, then m1.w and m2.w are two distinct objects, each with its own set of related objects and proper

The VPI interface is designed as asimulation interface, with access to both Verilog HDL objects and speci
simulation objects. This simulation interface is different from a hierarchical language interface, which would pr
access to HDL information but would not provide information about simulation objects.

22.1.3 Error handling

To determine if an error occurred, the routinevpi_chk_error() shall be provided. Thevpi_chk_error() routine shall
return a nonzero value if an error occurred in the previously called VPI routine. Callbacks can be set up for w
error occurs as well. The vpi_chk_error() routine can provide detailed information about the error.

22.2 VPI object classifications

VPI objects are classified with data model diagrams. These diagrams provide a graphical representation o
objects within a Verilog design to which the VPI routines shall provide access. The diagrams shall sho
relationships between objects and the properties of each object. Objects with sufficient commonality are pla
groups. Group relationships and properties apply to all the objects in the group.

As an example, this simplified diagram shows that there is aone-to-many relationshipsfrom objects of typemodule
to objects of typenet, and aone-to-one relationshipfrom objects of typenet to objects of typemodule. Objects of
type net have propertiesvpiName, vpiVector, and vpiSize, with C data types string, Boolean, and intege
respectively.

The VPI object data diagrams are presented in 22.5.

22.2.1 Accessing object relationships and properties

The VPI interface defines the C data type ofvpiHandle. All objects are manipulated via avpiHandle variable.
Object handles can be accessed from a relationship with another object, or from a hierarchical name, as the fo
example demonstrates:

module net
-> name

str: vpiName
str: vpiFullName

-> vector
bool: vpiVector

-> size
int: vpiSize
22-2
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vpiHandle net;
net = vpi_handle_by_name(“top.m1.w1”, NULL);

This example call retrieves a handle to wire top.m1.w1 and assigns it to thevpiHandle variable net. The NULL
second argument directs the routine to search for the name from the top level of the design.

The VPI interface provides generic functions for tasks, such as traversing relationships and determining p
values. One-to-one relationships are traversed with routinevpi_handle(). In the following example, the module tha
contains net is derived from a handle to that net:

vpiHandle net, mod;
net = vpi_handle_by_name(“top.m1.w1”, NULL);
mod = vpi_handle(vpiModule, net);

The call tovpi_handle() in the above example shall return a handle to module top.m1.

Properties of objects shall be derived with routines in the vpi_get family. The routinevpi_get() returns integer and
Boolean properties. The routinevpi_get_str() accesses string properties. To retrieve a pointer to the full hierarch
name of the object referenced by handle mod, the following call would be made:

char *name = vpi_get_str(vpiFullName, mod);

In the above example, character pointer name shall now point to the string “top.m1”.

One-to-many relationships are traversed with an iteration mechanism. The routinevpi_iterate() creates an object of
type vpiIterator , which is then passed to the routinevpi_scan() to traverse the desired objects. In the followin
example, each net in module top.m1 is displayed:

vpiHandle itr;
itr = vpi_iterate(vpiNet,mod);
while (net = vpi_scan(itr) )

vpi_printf(“\t%s\n”, vpi_get_str(vpiFullName, net) );

As the above examples illustrate, the routine naming convention is a‘vpi’ prefix with ‘_’ word delimiters (with the
exception of callback-related defined values, which use the‘cb’ prefix). Macro-defined types and properties have t
‘vpi’  prefix, and they use capitalization for word delimiters.

The routines for traversing Verilog HDL structures and accessing objects are described inSection 23.

22.2.2 Delays and values

Properties are of type integer, boolean, real or string. Delay and logic value properties, however, are more c
and require specialized routines and associated structures. The routinesvpi_get_delays()andvpi_put_delays()use
structure pointers, where the structure contains the pertinent information about delays. Similarly, simulation
are also handled with the routinesvpi_get_value()andvpi_put_value(), along with an associated set of structure
The derivatives are handled with the routinesvpi_decl_deriv() andvpi_put_deriv().

The routines and C structures for handling delays, derivatives and logic values are presented inSection 23.

22.3 List of VPI routines by functional category

The VPI routines can be divided into groups based on primary functionality.

— VPI routines for simulation-related callbacks
— VPI routines for system task/function callbacks
— VPI routines for traversing Verilog HDL hierarchy
— VPI routines for accessing properties of objects
— VPI routines for accessing objects from properties
22-3
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— VPI routines for delay processing

— VPI routines for logic and strength value processing

— VPI routines for task parameters derivatives processing

— VPI routines for analysis and simulation time processing

— VPI routines for miscellaneous utilities

Tables 22-1 through 22-9 list the VPI routines by major category.Section 23defines each of the VPI routines, listed
in alphabetical order.

Table 22-1—VPI routines for simulation related callbacks

To Use

Register a simulation-related callback vpi_register_cb()

Remove a simulation-related callback vpi_remove_cb()

Get information about a simulation-related callback vpi_get_cb_info()

Table 22-2—VPI routines for system task/function callbacks

To Use

Register a system task/function callback vpi_register_systf()

Get information about a system task/function callback vpi_get_systf_info()

Table 22-3—VPI routines for traversing Verilog HDL hierarchy

To Use

Obtain a handle for an object with a one-to-one relationship vpi_handle()

Obtain handles for objects in a one-to-many relationship vpi_iterate()
vpi_scan()

Obtain a handles for an object in a many-to-one relationship vpi_handle_multi()

Table 22-4—VPI routines for accessing properties of objects

To Use

Get the value of objects with types of int or bool vpi_get()

Get the value of objects with types of string vpi_get_str()

Get the value of objects with types of real vpi_get_real()
22-4
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Table 22-5—VPI routines for accessing objects from properties

To Use

Obtain a handle for a named object vpi_handle_by_name()

Obtain a handle for an indexed object vpi_handle_by_index()

Table 22-6—VPI routines for delay processing

To Use

Retrieve delays or timing limits of an object vpi_get_delays()

Write delays or timing limits to an object vpi_put_delays()

Table 22-7—VPI routines for logic, real and strength value processing

To Use

Retrieve logic value or strength value of an object vpi_get_value()

Write logic value or strength value to an object vpi_put_value()

Retrieve real value of an object vpi_get_real()

Table 22-8—VPI routines for task/function parameters derivatives processing

To Use

Declare a partial derivative between two task/function parameters vpi_decl_deriv()

Write a partial derivative value vpi_put_deriv()

Table 22-9—VPI routines for analysis and simulation time processing

To Use

Find the current simulation time or the scheduled time of future events vpi_get_time()

Find the current simulation time value in the continuous domain. vpi_get_continuous_time()

Find the current simulation time delta value in continuous domain. vpi_get_continuous_delta()

Declare a discontiuity order. vpi_decl_discontinuity()
22-5
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Table 22-10—VPI routines for miscellaneous utilities

To Use

Write to stdout and the current log file vpi_printf()

Open a file for writing vpi_mcd_open()

Close one or more files vpi_mcd_close()

Write to one or more files vpi_mcd_printf()

Retrieve the name of an open file vpi_mcd_name()

Retrieve data about product invocation options vpi_get_vlog_info()

See if two handles refer to the same object vpi_compare_objects()

Obtain error status and error information about the previous call to a
VPI routine

vpi_chk_error()

Free memory allocated by VPI routines vpi_free_object()
22-6
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22.4 Key to object model diagrams

This clause contains the keys to the symbols used in the object model diagrams. Keys are provided for obje
classes, traversing relationships, and accessing properties.

22.4.1   Diagram key for objects and classes

class defn

obj defn

class

object

obj defn

object

class

obj1

obj2

Object Definition:

Bold letters in a solid enclosure indicate an object definition. The
properties of the object are defined in this location.

Unnamed Class:

A dotted enclosure with no name is an unnamed class. It is sometimes
convenient to group objects although they shall not be referenced as a
group elsewhere, so a name is not indicated.

Object Reference:

Normal letters in a solid enclosure indicate an object reference.

Class Definition:

Bold italic letters in a dotted enclosure indicate a class definition,
where the class groups other objects and classes. Properties of the
class are defined in this location. The class definition can contain an
object definition.

Class Reference:

Italic letters in a dotted enclosure indicate a class reference.
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22.4.2   Diagram key for accessing properties

obj

obj

object

String properties are accessed with routinevpi_get_str().

Example:

   char name[nameSize];
   vpi_get_str(vpiName, obj_h);

Integer and Boolean properties are accessed with the routine
vpi_get().

Example: Given avpiHandle obj_h to an object of typevpiObj , get
the size of the object.

   bool vect_flag = vpi_get(vpivector, obj_h);
   int size = vpi_get_size(vpiSize, obj_h);

Complex properties for time and logic value are accessed with the
indicated routines. See the descriptions of the routines for usage.

-> vector
bool: vpiVector

-> size
int: vpiSize

-> complex
func1()
func2()

-> name
str: vpiName
str: vpiFullName
22-8
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22.4.3   Diagram key for traversing relationships

ref

obj

ref

obj
vpiTag

ref

obj

ref

obj
vpiTag

obj

obj

A single arrow indicates aone-to-onerelationship accessed
with the routinevpi_handle().

Example: GivenvpiHandle variable ref_h of type ref, access
obj_h of typevpiObj :

    obj_h = vpi_handle(vpiObj, ref_h);

A taggedone-to-onerelationship is traversed similarly, using
vpiTag instead ofvpiObj :

Example:

    obj_h = vpi_handle(vpiTag, ref_h);

A top-levelone-to-onerelationship is traversed similarly, using
NULL instead of ref_h:

Example:

    obj_h = vpi_handle(vpiObj, NULL);

A double arrow indicates aone-to-manyrelationship accessed
with the routinevpi_scan().

Example: GivenvpiHandle variable ref_h of type ref, scan
objects of typevpiObj :

    itr = vpi_iterate(vpiObj, ref_h);
    while (obj_h = vpi_scan(itr) )
      /* process ‘obj_h’ */

A taggedone-to-manyrelationship is traversed similarly, using
vpiTag instead ofvpiObj :

Example:

    itr = vpi_iterate(vpiTag, ref_h);
    while (obj_h = vpi_scan(itr) )
      /* process ‘obj_h’ */

A top-level one-to-manyrelationship is traversed similarly,
using NULL instead of ref_h:

Example:

    itr = vpi_iterate(vpiObj, NULL);
    while (obj_h = vpi_scan(itr) )
      /* process ‘obj_h’ */
22-9
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groups of
22.5   Object data model diagrams

Subclauses 22.5.2 through 22.5.26 contain the data model diagrams that define the accessible objects and
objects, along with their relationships and properties.
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22.5.1 Analysis

NOTES

1—Top-level modules shall be accessed usingvpi_iterate() with a NULL reference object.

2—Passing a NULL handle tovpi_get() with types vpiTimePrecision or vpiTimeUnit shall return the smallest time
precision of all modules in the instantiated design.

analysis
-> dc analysis

bool: vpiTransientAnalysis

-> transient analysis
bool: vpiTransientAnalysis

-> start time
real: vpiContinuousStartTime

-> end time
real: vpiContinuousEndTime

-> maximum time step
real: vpiDefNetType

-> ac analysis
bool: vpiAcAnalysis

-> start frequency
real: vpiContinuousStartTime

-> end frequency
real: vpiContinuousEndTime

-> maximum time step
real: vpiContinuousMaxTimeStep
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22.5.2   Module

NOTES

1—Top-level modules shall be accessed usingvpi_iterate() with a NULL reference object.

2—Passing a NULL handle tovpi_get() with types vpiTimePrecision or vpiTimeUnit shall return the smallest time
precision of all modules in the instantiated design.

net

reg

variables

mod path

tchk

memory

scope

process

module

 cont assign

port

module

io decl

vpiInternalScope

def param

param assign

primitive

parameter

spec param

-> cell
bool: vpiCellInstance

-> decay time
int: vpiDefDecayTime

-> default net type
int: vpiDefNetType

-> definition location
int: vpiDefLineNo
str: vpiDefFile

-> definition name
str: vpiDefName

-> delay mode
int: vpiDefDelayMode

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> protected
bool: vpiProtected

-> timeprecision
int: vpiTimePrecision

-> timeunit
int: vpiTimeUnit

-> top module
bool: vpiTopModule

-> unconnected drive
int: vpiUnconnDrive

named event

nodes

branches
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22.5.3   Nature, Discipline

discipline param assign

vpiPotentialNature

vpiFlowNature

nature

nature

nature param assign

nature
vpiParent

-> name
str: vpiName
str: vpiFullName

-> name
str: vpiName
str: vpiFullName

discipline

nature
vpiChild
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22.5.4   Scope, task, function, IO declaration

scope

module

named event

variables

memory

taskfunc

scope

def param

taskfunc

task

function

expr

io decl

vpiInternalScope

reg

named begin

named fork
stmt

expr

vpiRightRange

vpiLeftRange

udp defn

module

reg

net

variables
vpiExpr

-> name
str: vpiName
str: vpiFullName

-> location
int: vpiLineNo
str: vpiFile

-> direction
int: vpiDirection

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

parameter

NOTE—A Verilog HDL function shall contain an object with the same name, size, and type as the function.
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22.5.5   Ports

vpiHighConn

vpiBit

vpiParent
vpiLowConnport

port bit

ports

NOTES

1—vpiHighConn shall indicate the hierarchically higher (closer to the top module) port connection.

2—vpiLowConn shall indicate the lower (further from the top module) port connection.

3—Propertiesscalarandvectorshall indicate if the port is 1 bit or more than 1 bit. They shall not indicate anything about wh
is connected to the port.

4—Propertiesindex andname shall not apply for port bits.

5—If a port is explicitly named, then the explicit name shall be returned. If not, and a name exists, then that name sh
returned. Otherwise, NULL shall be returned.

6—vpiPortIndex  can be used to determine the port order.

expr

expr

-> connected by name
bool: vpiConnByName

-> delay (mipd)
vpi_get_delays()
vpi_put_delays()

-> direction
int: vpiDirection

-> explicitly named
bool: vpiExplicitName

-> index
int: vpiPortIndex

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> vector
bool: vpiVector

nodes

module
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22.5.6   Nodes

vpiLeftRange

vpiBit

vpiParent
vpiRightRangenode

node bit

nodes

NOTES

1—Propertiesscalar andvector shall indicate if the node is 1 bit or more than 1 bit.

2—Property potential shal indicate the node to ground potential

expr

expr

-> implicitly declared
bool: vpiImplicitDecl

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> potential
real: vpiPotential

-> vector
bool: vpiVector

branches

nets

vpiIndex
expr

module

discipline
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22.5.7   Branches

vpiLeftRange

vpiBit

vpiParent
vpiRightRangebranch

branch

branches

NOTES

1—Propertiesscalar andvector shall indicate if the node is 1 bit or more than 1 bit.

2—Propertypotential shal indicate the potential ofvpiPosNode with respect tovpiNegNode

3—Propertyflow shall indicate the flow through the branch the reference (positive sign) direction is positive to negative

expr

expr

-> implicitly declared
bool: vpiImplicitDecl

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> discipline
int: vpiDiscipline

-> potential
real: vpiPotential

-> flow
real: vpiFlow

-> vector
bool: vpiVector

nodes

nodes

vpiIndex
expr

module

contribsvpiPosNode

vpiNegNode

-> flow source
bool: vpiZFlowSrc

-> potential source
bool: vpiPotentialSrc

-> equation target
bool: vpiEqnTarget
22-17
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22.5.8   Nets

NOTES

1—For vectors, net bits shall be available regardless of vector expansion.

2—Continuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.

3—Continuous assignments and primitive terminals shall only be accessed from scalar nets or bit selects.

4—ForvpiPortInst andvpiPort , if the reference handle is a bit or the entire vector, the relationships shall return a handl
either a port bit or the entire port, respectively.

5—For implicit nets,vpiLineNo shall return0, and vpiFile shall return the filename where the implicit net is first referenced

6—Only active forces and assign statements shall be returned forvpiLoad.

7—Only active forces shall be returned forvpiDriver .

8—vpiDriver  shall also return ports that are driven by objects other than nets and net bits.

vpiBit

vpiParent

nets

net

net bit

module

vpiPortInst

vpiHighConn

ports

vpiLowConn

prim term

path term

tchk term

vpiDriver

vpiLoad

vpiDelay

vpiLeftRange

vpiRightRange

vpiIndex

cont assign

expr

expr

expr

expr

ports

ports

force

assign stmt

-> delay
vpi_get_delays()

-> expanded
bool: vpiExpanded

-> implicitly declared
bool: vpiImplicitDecl

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> net decl assign
bool: vpiNetDeclAssign

-> net type
int: vpiNetType

-> scalar
bool: vpiScalar

-> scalared declaration
bool: vpiExplicitScalared

-> size
int: vpiSize

-> domain
int vpiDomain

-> strength
int: vpiStrength0
int: vpiStrength1
int: vpiChargeStrength

-> value
vpi_get_value()
vpi_put_value()

-> vector
bool: vpiVector

-> vectored declaration
bool: vpiExplicitVectored

nodes

discipline
22-18
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22.5.9   Regs

vpiBit

vpiParent

regs

reg

reg bit

scope

vpiPortInst
ports

vpiHighConnvpiLowConn

NOTES

1—Continuous assignments and primitive terminals shall be accessed regardless of hierarchical boundaries.

2—Continuous assignments and primitive terminals shall only be accessed from scalar regs and bit selects.

3—Only active forces and assign statements shall be returned forvpiLoad andvpiDriver .

vpiLeftRange

vpiRightRange

vpiIndex

expr

ports

prim term

cont assign

force

assign stmt

vpiLoad

vpiDriver

expr

expr

tchk term

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> scalar
bool: vpiScalar

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> vector
bool: vpiVector
22-19
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22.5.10   Variables, named event

vpiParent

variables

integer var

var select

real var

time var

scope

vpiPortInst
ports

vpiHighConnvpiLowConn

vpiParent

scope named event

expr

expr

vpiLeftRange

vpiRightRange

expr
vpiIndex

ports

NOTE—vpiLeftRange andvpiRightRange shall be invalid for reals, since there cannot be arrays of reals.

-> array
bool: vpiArray

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> domain
int: vpiDomain

-> location
int: vpiLineNo
str: vpiFile

-> value
vpi_get_value()
vpi_put_value()

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName
22-20
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22.5.11   Memory

NOTES

1—vpiSize for a memory shall return the number of words in the memory.

2—vpiSize for a memory word shall return the number of bits in the word.

scope

memory
vpiParent

memory word

vpiLeftRange

vpiRightRange

vpiLeftRange

vpiRightRange

expr

expr

expr

expr

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

-> value
vpi_get_value()
vpi_put_value()

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> size
int: vpiSize

expr
vpiIndex
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22.5.12   Parameter, specparam

module

parameterscope

def parammodule

param assignmodule

vpiRhs
expr

vpiLhs
parameter

spec param

vpiRhs
expr

vpiLhs
parameter

expr

expr

NOTES

1—Obtaining the value from the objectparameter shall return the final value of the parameter after all module instantiation
overrides and defparams have been resolved.

2—vpiLhs from a param assign object shall return a handle to the overridden parameter.

-> constant type
int: vpiConstType

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> value
vpi_get_value()

-> constant type
int: vpiConstType

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> value
vpi_get_value()

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile
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22.5.13   Primitive, prim term

prim term

module

primitive

gate

switch

udpudp defn

vpiDelay

expr

expr

-> definition name
str: vpiDefName

-> delay
vpi_get_delays()
vpi_put_delays()

-> location
int: vpiLineNo
str: vpiFile

-> name
str: vpiName
str: vpiFullName

-> primitive type
int: vpiPrimType

-> number of inputs
int: vpiSize

->strength
int: vpiStrength0
int: vpiStrength1

-> value
vpi_get_value()
vpi_put_value()

-> domain
int: vpiDomain

-> direction
int: vpiDirection

-> index
int: vpiTermIndex

-> location
int: vpiLineNo
str: vpiFile

-> value
vpi_get_value()

NOTES

1—vpiSize shall return the number of inputs.

2—For primitives,vpi_put_value() shall only be used with sequential UDP primitives.

device
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22.5.14   UDP

udp defn

udp

table entry

initial

NOTE—Only string (decompilation) and vector (ASCII values) shall be obtained for table entry objects usingvpi_get_value().
Refer to the definition ofvpi_get_value() for additional details.

io decl
-> definition name

str: vpiDefName

-> location
int: vpiLineNo
str: vpiFile

-> number of inputs
int: vpiSize

-> protected
bool: vpiProtected

-> type
int: vpiPrimType

-> location
int: vpiLineNo
str: vpiFile

-> number of symbol entries
int: vpiSize

-> value
vpi_get_value()
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22.5.15   Module path, timing check, intermodule path

NOTES

1—ThevpiTchkRefTerm is the first terminal for all tchks except$setup, wherevpiTchkDataTerm is the first terminal and
vpiTchkRefTerm  is the second terminal.

2—To get to an intermodule path,vpi_handle_multi(vpiInterModPath, port1, port2)  can be used.

path term
vpiModPathIn
vpiModPathOut

module
expr

expr

vpiModDataPathIn

mod path

module

tchk tchk term
vpiTchkRefTerm

vpiTchkNotifier

regs

expr

vpiConditionexpr

vpiTchkDataTerm

expr
vpiDelay

expr
vpiDelay

-> delay
vpi_get_delays()
vpi_put_delays()

-> location
int: vpiLineNo
str: vpiFile

-> path type
int: vpiPathType

-> polarity
int: vpiPolarity
int: vpiDataPolarity

-> hasIfNone
bool: vpiModPathHasIfNone

-> direction
int: vpiDirection

-> edge
int: vpiEdge

-> location
int: vpiLineNo
str: vpiFile

-> limit
vpi_get_delays()
vpi_put_delays()

-> location
int: vpiLineNo
str: vpiFile

-> tchk type
int: vpiTchkType

-> edge
int: vpiEdge

-> location
int: vpiLineNo
str: vpiFile

inter mod path ports
-> delay

vpi_get_delay()
vpi_put_delay()

vpiCondition
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22.5.16   Task and function call

tf call

sys task call

sys func call

task call

func call

expr

task

function

vpiArgument

user systf

NOTES

1—The system task or function that invoked an application shall be accessed withvpi_handle(vpiSysTfCall, NULL)

2—vpi_get_value()shall return the current value of the system function.

3—If the vpiUserDefn property of a system task or function call is true, then the properties of the corresponding systf ob
shall be obtained viavpi_get_systf_info().

4—All user-defined system tasks or functions shall be retrieved usingvpi_iterate(), with vpiUserSystfas the type argument,
and a NULL reference argument.

vpiSysTfCall

-> tf name
str: vpiName

-> location
int: vpiLineNo
str: vpiFile

-> systf info
p_vpi_systf_data:
  vpi_get_systf_info()-> user defined

bool: vpiUserDefn

-> value
vpi_put_value()
vpi_get_value()

-> sys func type
int: vpiSysFuncType
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22.5.17   Continuous assignment

cont assign
vpiRhs

expr

vpiLhs
expr

module

expr
vpiDelay

-> delay
vpi_get_delays()

-> location
int: vpiLineNo
str: vpiFile

-> net decl assign
bool: vpiNetDeclAssign

-> strength
int: vpiStrength0
int: vpiStrength1
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22.5.18   Simple expressions

simple expr

variables

expr

nets

regs

memory word

var select

vpiUse prim term

stmt

port

path term

tchk term

NOTES

1—For vectors, thevpiUse relationship shall access any use of the vector or part-selects or bit-selects thereof.

2—For bit-selects, thevpiUse relationship shall access any specific use of that bit, any use of the parent vector, and any
select that contains that bit.

cont assign

vpiIndex

parameter

-> name
str: vpiName
str: vpiFullName

memory
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22.5.19   Expressions

expr

operation

constant

simple expr

part select

vpiParent

vpiOperand

func call

sys func call

expr

expr

vpiLeftRange

vpiRightRange

expr

NOTE—For an operator whose type isvpiMultiConcat , the first operand shall be the multiplier expression.

-> location
int: vpiLineNo
str: vpiFile

-> size
int: vpiSize

-> value
vpi_get_value()

-> operation type
int: vpiOpType

-> location
int: vpiLineNo
str: vpiFile

-> constant type
int:
vpiConstType

-> location
int: vpiLineNo

accessfunc

idt/ddt
discipline

branches
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22.5.20   Contribs

contribs

potential

ind flow

flow
vpiRhs

expr

expr

vpiLhs

vpiRhs

expr

-> value
vpi_get_value()

-> direct
bool:vpiDirect

-> flow
bool: vpiFlow

ind potential

branches
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22.5.21   Process, block, statement, event statement

module

initial

process

always

block

stmt

atomic stmt

block stmt

atomic stmt

assignment

deassign

case

for
delay control

event control

event stmt

assign stmt

if

if else
while

repeat

wait

tf call
disable

force

release

null stmt

forever

begin

fork

named begin

named fork

scope

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

event stmt ‘->’ named event
-> location

int: vpiLineNo
str: vpiFile

analog

contribs
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22.5.22   Assignment, delay control, event control, repeat control

assignment
vpiRhs

expr

vpiLhs
expr

delay control

event control

repeat control

delay control ‘#’ stmt

vpiCondition

expr

stmt

event control ‘@’

named event

expr
vpiDelay

NOTE—For delay control and event control associated with assignment, the statement shall always be NULL.

repeat control expr

event control

-> location
int: vpiLineNo
str: vpiFile

-> blocking
bool: vpiBlocking

-> location
int: vpiLineNo
str: vpiFile

-> delay
vpi_get_delays()

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile
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22.5.23   While, repeat, wait, for, forever

vpiCondition
expr

stmt

while

repeat

wait

stmt

for
vpiForInitStmt

stmt

vpiCondition
expr

vpiForIncStmt
stmt

forever stmt
-> location

int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile
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22.5.24   If, if-else, case

vpiElseStmt
stmt

if

if else

vpiCondition
expr

stmt

case
vpiCondition

expr

case item expr

vpiStmt
stmt

NOTES

1—Thecase item shall group all case conditions that branch to the same statement.

2—vpi_iterate() shall return NULL for the default case item since there is no expression with the default case.

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

-> case type
int: vpiCaseType

-> location
int: vpiLineNo
str: vpiFile
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22.5.25   Assign statement, deassign, force, release, disable

deassign

vpiLhs
expr

vpiRhs
expr

vpiLhs
expr

function

task

named fork

disable
vpiScope

named begin

release

force

assign stmt

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile

-> location
int: vpiLineNo
str: vpiFile
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22.5.26   Callback, time queue

callback

prim term

time queue
vpiParent

NOTES

1—To get information about the callback object, the routinevpi_get_cb_info() can be used.

2—To get callback objects not related to the above objects, the second argument tovpi_iterate() shall be NULL.

3—The time queue objects shall be returned in increasing order of simulation time.

4—vpi_iterate() shall return NULL if there is nothing left in the simulation queue.

5—If any events after read only sync remain in the current queue, then it shall not be returned as part of the iteration.

stmt

expr
-> cb info

p_cb_data:
  vpi_get_cb_info()

time queue
-> time

vpi_get_time()
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Section 24

VPI routine definitions

This section describes the Verilog Procedural Interface (VPI) routines, explaining their function, syntax, and
The routines are listed in alphabetical order. SeeSection 20 for the conventions used in the definitions of the PL
routines.
24-1
 Standards Draft, subject to change.
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24.1   vpi_chk_error()

The VPI routinevpi_chk_error() shall return an integer constant representing an error severity level if the prev
call to a VPI routine resulted in an error. The error contants are shown in Table 24-1. If the previous call to
routine did not result in an error, thenvpi_chk_error() shall return FALSE. The error status shall be reset by any V
routine call exceptvpi_chk_error() . Callingvpi_chk_error()  shall have no effect on the error status.

If an error occurred, the s_vpi_error_info structure shall contain information about the error. If the error inform
is not needed, a NULL can be passed to the routine. The s_vpi_error_info structure used byvpi_chk_error() is
defined in vpi_user.h and is listed in Figure 24-1.

Figure 24-1—The s_vpi_error_info structure definition

vpi_chk_error()

Synopsis: Retrieve information about VPI routine errors.

Syntax: vpi_chk_error(error_info_p)

Type Description

Returns: int returns the error severity level if the previous VPI routine call resulted in an error and
FALSE if no error occurred

Type Name Description

Arguments: p_vpi_error_info error_info_p Pointer to a structure containing error information

Table 24-1—Return error constants for vpi_chk_error()

Error Constant Severity Level

vpiNotice lowest severity

vpiWarning

vpiError

vpiSystem

vpiInternal highest severity

typedef struct t_vpi_error_info {
int state; /* vpi[Compile,PLI,Run] */
int level; /* vpi[Notice, Warning, Error, System, Internal] */
char *message;
char *product;
char *code;
char *file;
int line;

} s_vpi_error_info, *p_vpi_error_info;
24-2
Standards Draft, subject to change.
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24.2   vpi_compare_objects()

The VPI routinevpi_compare_objects()shall return true if the two handles refer to the same object. Otherwise, f
shall be returned. Handle equivalence cannot be determined with a C ‘==’ comparison.

vpi_compare_objects()

Synopsis: Compare two handles to determine if they reference the same object.

Syntax: vpi_compare_objects(obj1, obj2)

Type Description

Returns: bool true if the two handles refer to the same object. Otherwise, false

Type Name Description

Arguments: vpiHandle obj1 Handle to an object

vpiHandle obj2 Handle to an object
24-3
 Standards Draft, subject to change.
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24.3 vpi_decl_deriv()

The VPI routinevpi_decl_deriv() shall be used in the compile_tf callback to pre-allocate space for a pa
derivative. This function is available to analog tasks and functions only. The purpose of this function is decla
only, it does not assign any value to the derivative being declared. Having declared a partial derivative usi
function in the compile_tf callback, values may then be contributed to the derivative usinf the vpi_put_deriv fun
in the call_tf call back.

The value returned by a function is usually a function of one or more of the arguments and because a function
may modify the values of its arguments any argument may be a function of one ore more other arguments. Th
possible (though not necessary) that there will be a partial derivative of the returned value with respect to any o
the arguments and that there will be a partial derivative of any particular argument with respect to any or all
other arguments.

The values passed tovpi_decl_deriv()are integers. The first indicates the value for which a partial derivative is to
declated. Zero indicates the returned value, one represents the first argument, two the second argument, a
The second indicates the value with respect to which the deravitive being declared will be calculated. For ex
vpi_decl_deriv(0,3)would indicate the partial derivative of the returned vale with respect to the third argument

vpi_decl_deriv()

Synopsis: Declare a partial derivative of one argument or return value with respect tyo another.

Syntax: vpi_decl_deriv(var,wrt)

Type Description

Returns: bool true on success and false on failure

Type Name Description

Arguments: int var argument for which partial derivative is to be given

int wrt argument with respect to which derivative is taken
24-4
Standards Draft, subject to change.
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24.4 vpi_decl_discontinuity()

The VPI routinevpi_decl_discontinuity()shall be used to announce discontinuity in values associated with varia
which affects simulation. An abrupt change in the value of a variable or in the value of any of its derivative
examples of discontinuity. If the analog simulation algorithm uses special techniques for dealing
discontinuitiues, a call to this function may serve as a signal to employ them.

This function is available to analog tasks and functions only.

vpi_decl_disconitnuity()

Synopsis: Announce discontinuity in a continuously varying quintity to the simulator

Syntax: vpi_decl_discontinuity()

Type Description

Returns: void

Type Name Description

Arguments: int order the order of the discontinuity
24-5
 Standards Draft, subject to change.
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24.5 vpi_free_object()

The VPI routinevpi_free_object()shall free memory allocated for objects. It shall generally be used to free mem
created for iterator objects. The iterator object shall automatically be freed whenvpi_scan() returns NULL either
because it has completed an object traversal or encountered an error condition. If neither of these condition
(which can happen if the code breaks out of an iteration loop before it has scanned every object),vpi_free_object()
should be called to free any memory allocated for the iterator. This routine can also optionally be use
implementations that have to allocate memory for objects. The routine shall return true on success and f
failure.

vpi_free_object()

Synopsis: Free memory allocated by VPI routines.

Syntax: vpi_free_object(obj)

Type Description

Returns: bool true on success and false on failure

Type Name Description

Arguments: vpiHandle obj Handle of an object
24-6
Standards Draft, subject to change.
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24.6   vpi_get()

The VPI routinevpi_get()shall return the value of object properties, for properties of typeint andbool (boolshall be
defined toint). Object properties of typebool shall return1 for true and0 for false. For object properties of typeint
such asvpiSize, any integer shall be returned. For object properties of typeint that return a defined value, refer to
Annex C for the value that shall be returned. Note for object propertyvpiTimeUnit or vpiTimePrecision, if the
object is NULL, then the simulation time unit shall be returned. Should an error occur,vpi_get() shall return
vpiUndefined.

vpi_get()

Synopsis: Get the value of an integer or Boolean property of an object.

Syntax: vpi_get(prop, obj)

Type Description

Returns: int Value of an integer or Boolean property

Type Name Description

Arguments: int prop An integer constant representing the property of an objec
for which to obtain a value

vpiHandle obj Handle to an object

Related
routines:

Use vpi_get_str() to get string properties
24-7
 Standards Draft, subject to change.
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24.7   vpi_get_cb_info()

The VPI routinevpi_get_cb_info() shall return information about a simulation-related callback in an s_cb_d
structure. The memory for this structure shall be allocated by the user.

The s_cb_data structure used byvpi_get_cb_info() is defined in vpi_user.h and is listed in Figure 24-2.

Figure 24-2—The s_cb_data structure definition

vpi_get_cb_info()

Synopsis: Retrieve information about a simulation-related callback.

Syntax: vpi_get_cb_info(obj, cb_data_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to a simulation-related callback

p_cb_data cb_data_p Pointer to a structure containing callback information

Related
routines:

Use vpi_get_systf_info() to retrieve information about a system task/function callback

typedef struct t_cb_data {
int reason;
int (*cb_rtn)();
vpiHandle obj;
p_vpi_time time; /* structure with simulation time info */
p_vpi_value value; /* structure with simulation value info */
char *user_data; /* user data to be passed to callback function */

} s_cb_data, *p_cb_data;
24-8
Standards Draft, subject to change.
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24.8 vpi_get_continuous_delta()

The VPI routinevpi_get_continuous_delta()shall be used determin the size of the analog time step being attem
it returns the elapsed time between the latest converged and accepted solution and the solution being calcula
function will return zero during DC or the time zero transient solution.

vpi_get_continuous delta()

Synopsis: Get the time elapsed since the previous solution..

Syntax: vpi_get_continuous_delta()

Type true on success and false on failureDescription

Returns: double time elapsed between the solution being calculated and the last converged solution

Type Name Description

Arguments: NONE this function accepts no arguments
24-9
 Standards Draft, subject to change.
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24.9 vpi_get_continuous_time()

The VPI routinevpi_get_continuous_time()shall be used determin the time of the solution attempted during
attempt, or of the latest converged and accepted solution otherwise. The function will return zero during DC
time zero transient solution.

vpi_get_continuous time()

Synopsis: Get the time of the current solution..

Syntax: vpi_get_continuous_time()

Type true on success and false on failureDescription

Returns: double time associated with the current solution

Type Name Description

Arguments: NONE this function accepts no arguments
24-10
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24.10 vpi_get_delays()

The VPI routinevpi_get_delays()shall retrieve the delays or pulse limits of an object and place them in
s_vpi_delay structure that has been allocated by the user. The format of the delay information shall be contro
the time_typeflag in the s_vpi_delay structure. This routine shall ignore the value of thetypeflag in the s_vpi_time
structure.

The s_vpi_delay and s_vpi_time structures used by bothvpi_get_delays()and vpi_put_delays() are defined in
vpi_user.h and are listed in Figures 24-3 and 24-4.

Figure 24-3—The s_vpi_delay structure definition

Figure 24-4—The s_vpi_time structure definition

Thedafield of the s_vpi_delay structure shall be a user-allocated array of s_vpi_time structures. This array sha
delay values returned byvpi_get_delays(). The number of elements in this array shall be determined by

— The number of delays to be retrieved

vpi_get_delays()

Synopsis: Retrieve the delays or pulse limits of an object.

Syntax: vpi_get_delays(obj, delay_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_delay delay_p Pointer to a structure containing delay information

Related
routines:

Use vpi_put_delays() to set the delays or timing limits of an object

typedef struct t_vpi_delay {
struct t_vpi_time *da; /* ptr to user allocated array of delay

values */
int no_of_delays; /* number of delays */
int time_type; /* [vpiScaledRealTime, vpiSimTime] */
bool mtm_flag; /* true for mtm */
bool append_flag; /* true for append, false for replace */
bool pulsere_flag; /* true for pulsere values */

} s_vpi_delay, *p_vpi_delay;

typedef struct t_vpi_time
{

int type; /* [vpiScaledRealTime, vpiSimTime] */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;
24-11
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— Themtm_flag setting
— Thepulsere_flag setting

The number of delays to be retrieved shall be set in theno_of_delaysfield of the s_vpi_delay structure. Legal value
for the number of delays shall be determined by the type of object.

— For primitive objects, theno_of_delays value shall be 2 or 3.
— For path delay objects, theno_of_delays value shall be 1, 2, 3, 6, or 12.
— For timing check objects, theno_of_delaysvalue shall match the number of limits existing in the timin

check.
— For intermodule path objects, theno_of_delays value shall be 2 or 3.

The user allocated s_vpi_delay array shall contain delays in the same order in which they occur in the Verilo
description. The number of elements for each delay shall be determined by the flagsmtm_flag andpulsere_flag, as
shown in Table 24-2.

The delay structure has to be allocated before passing a pointer tovpi_get_delays(). In the following example, a
static structure,prim_da, is allocated for use by each call to thevpi_get_delays() function.

display_prim_delays(prim)
vpiHandle prim;t2

{
static s_vpi_timeprim_da[3];
static s_vpi_delay delay_s = {NULL, 3, vpiScaledRealTime};
static p_vpi_delay delay_p = &delay_s;

delay_s.da = &prim_da;
vpi_get_delays(prim, delay_p);

Table 24-2—Size of the s_vpi_delay->da array

Flag values Number of s_vpi_time array elements
required for s_vpi_delay->da

Order in which delay elements
shall be filled

mtm_flag = false
pulsere_flag = false no_of_delays

1st delay: da[0] -> 1st delay
2nd delay: da[1] -> 2nd delay
...

mtm_flag = true
pulsere_flag = false 3 *no_of_delays

1st delay: da[0] -> min delay
           da[1] -> typ delay
           da[2] -> max delay
2nd delay: ...

mtm_flag = false
pulsere_flag = true 3 *no_of_delays

1st delay: da[0] -> delay
           da[1] -> reject limit
           da[2] -> error limit
2nd delay element: ...

mtm_flag = true
pulsere_flag = true 9 *no_of_delays

1st delay: da[0] -> min delay
           da[1] -> typ delay
           da[2] -> max delay
           da[3] -> min reject
           da[4] -> typ reject
           da[5] -> max reject
           da[6] -> min error
           da[7] -> typ error
           da[8] -> max error
2nd delay: ...
24-12
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vpi_printf(“Delays for primitive %s: %6.2f %6.2f %6.2f\n”,vpi_get_str(vpiFullName, prim)
delay_p->da[0].real, delay_p->da[1].real, delay_p->da[2].real);

}

24-13
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24.11   vpi_get_str()

The VPI routinevpi_get_str()shall return string property values. The string shall be placed in a temporary buffer
shall be used by every call to this routine. If the string is to be used after a subsequent call, the string should be
to another location. Note that a different string buffer shall be used for string values returned through the s_vp
structure.

The following example illustrates the usage ofvpi_get_str().

char *str;
vpiHandle mod = vpi_handle_by_name(“top.mod1”,NULL);
vpi_printf (“Module top.mod1 is an instance of %s\n”,

vpi_get_str(vpiDefName, mod));

vpi_get_str()

Synopsis: Get the value of a string property of an object.

Syntax: vpi_get_str(prop, obj)

Type Description

Returns: char * Pointer to a character string containing the property value

Type Name Description

Arguments: int prop An integer constant representing the property of an objec
for which to obtain a value

vpiHandle obj Handle to an object

Related
routines:

Use vpi_get() to get integer and Boolean properties
24-14
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24.12   vpi_get_systf_info()

The VPI routinevpi_get_systf_info()shall return information about a user-defined system task or function callb
in an s_vpi_systf_data structure. The memory for this structure shall be allocated by the user.

The s_vpi_systf_data structure used byvpi_get_systf_info() is defined in vpi_user.h and is listed in Figure 24-5.

Figure 24-5—The s_vpi_systf_data structure definition

vpi_get_systf_info()

Synopsis: Retrieve information about a user-defined system task/function-related callback.

Syntax: vpi_get_systf_info(obj, systf_data_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to a system task/function-related callback

p_vpi_systf_data systf_data_p Pointer to a structure containing callback information

Related
routines:

Use vpi_get_cb_info() to retrieve information about a simulation-related callback

typedef struct t_vpi_systf_data {
int type; /* vpiSys[Task,Function] */
int sysfunctype; /* vpi[IntFunc,RealFunc,TimeFunc,SizedFunc] */
char *tfname; /* first character must be “$” */
int (*calltf)();
int (*compiletf)();
int (*sizetf)(); /* for vpiSizedFunc system functions only */
char *user_data;

} s_vpi_systf_data, *p_vpi_systf_data;
24-15
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24.13   vpi_get_time()

The VPI routinevpi_get_time()shall retrieve the current simulation time, using the time scale of the object. Ifobj is
NULL, the simulation time is retrieved using the simulation time unit. Thetime_p->typefield shall be set to indicate
if scaled real, continuous, or simulation time is desired. The memory for thetime_pstructure shall be allocated by the
user.

The s_vpi_time structure used byvpi_get_time() is defined in vpi_user.h and is listed in Figure 24-6 [this is the sa
time structure as used byvpi_put_value()].

Figure 24-6—The s_vpi_time structure definition

vpi_get_time()

Synopsis: Retrieve the current simulation.

Syntax: vpi_get_time(obj, time_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_time time_p Pointer to a structure containing time information

Related
routines:

typedef struct t_vpi_time {
int type;    /* for vpiScaledRealTime, vpiSimTime, vpiContinuousTime */
unsigned int high, low; /* for vpiSimTime */
double real;    /* for vpiScaledRealTime or vpiContinuousTime */

} s_vpi_time, *p_vpi_time;
24-16
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24.14   vpi_get_value()

The VPI routinevpi_get_value()shall retrieve the simulation value of VPI objects. The value shall be placed in
s_vpi_value structure, which has been allocated by the user. The format of the value shall be set by theformatfield of
the structure.

When theformatfield is vpiObjTypeVal , the routine shall fill in the value and change theformatfield based on the
object type, as follows:

— For an integer,vpiIntVal
— For a real,vpiRealVal
— For a scalar, eithervpiScalar or vpiStrength
— For a time variable,vpiTimeVal  with vpiSimTime
— For a vector,vpiVectorVal

The buffer this routine uses for string values shall be different from the buffer thatvpi_get_str() shall use. The string
buffer used by vpi_get_value() is overwritten with each call. If the value is needed, it should be saved b
application.

vpi_get_value()

Synopsis: Retrieve the simulation value of an object.

Syntax: vpi_get_value(obj, value_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an expression

p_vpi_value value_p Pointer to a structure containing value information

Related
routines:

Use vpi_put_value() to set the value of an object
24-17
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The s_vpi_value, s_vpi_vecval and s_vpi_strengthval structures used byvpi_get_value()are defined in vpi_user.h
and are listed in Figures 24-7, 24-8, and 24-9.

Figure 24-7—The s_vpi_value structure definition

Figure 24-8—The s_vpi_vecval structure definition

Figure 24-9—The s_vpi_strengthval structure definition

For vectors, thep_vpi_vecvalfield shall point to an array of s_vpi_vecval structures. The size of this array sha
determined by the size of the vector, wherearray_size = ((vector_size-1)/32 + 1). The lsb of the vector shall be
represented by the lsb of the 0-indexed element of s_vpi_vecval array. The 33rd bit of the vector shall be repr
by the lsb of the 1-indexed element of the array, and so on. The memory for the union membersstr, time, vector,
strength, andmiscof the value union in the s_vpi_value structure shall be provided by the routinevpi_get_value().
This memory shall only be valid until the next call tovpi_get_value(). [Note that the user must provide the memor
for these members when callingvpi_put_value()]. When a value change callback occurs for a value type

typedef struct t_vpi_value {
int format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,

Time,Vector,Strength,ObjType]Val*/
union {

char *str;
int scalar; /* vpi[0,1,X,Z] */
int integer;
double real;
struct t_vpi_time *time;
struct t_vpi_vecval *vector;
struct t_vpi_strengthval *strength;
char *misc;

} value;
} s_vpi_value, *p_vpi_value;

typedef struct t_vpi_vecval {
int aval, bval; /* bit encoding: ab: 00=0, 10=1, 11=X, 01=Z */

} s_vpi_vecval, *p_vpi_vecval;

typedef struct t_vpi_strengthval {
int logic; /* vpi[0,1,X,Z] */
int s0, s1; /* refer to strength coding in the LRM */

} s_vpi_strengthval, *p_vpi_strengthval;
24-18
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vpiVectorVal , the system shall create the associated memory (an array of s_vpi_vecval structures) and f
memory upon the return of the callback.

To get the ASCII values of UDP table entries (as explained inSection 8.1.6, Table 8-1), thep_vpi_vecvalfield shall
point to an array of s_vpi_vecval structures. The size of this array shall be determined by the size of the tabl
(no. of symbols per table entry), wherearray_size = ((table_entry_size-1)/4 + 1). Each symbol shall require a byte
the ordering of the symbols within s_vpi_vecval shall be the most significant byte ofabit first, then the least
significant byte ofabit, then the most significant byte ofbbit and then the least significant byte ofbbit. Each symbol
can be either one or two characters; when it is a single character, the second half of the byte shall be an ASC

The miscfield in the s_vpi_value structure shall provide for alternative value types, which can be implemen
specific. If this field is utilized, one or more corresponding format types shall also be provided.

In the following example, the binary value of each net that is contained in a particular module and whose name
with a particular string is displayed. [This function makes use of the strcmp() facility normally declared in a str
C library.]

void display_certain_net_values(mod, target)
vpiHandle mod;

Table 24-3—Return value field of the s_vpi_value structure union

Format Union member Return description

vpiBinStrVal str String of binary char(s) [1, 0, x, z]

vpiOctStrVal str String of octal char(s) [0–7, x, X, z, Z]
x When all the bits arex
X When some of the bits arex
z When all the bits arez
Z When some of the bits arez

vpiDecStrVal str  String of decimal char(s) [0–9]

vpiHexStrVal str String of hex char(s) [0–f, x, X, z, Z]
x When all the bits arex
X When some of the bits arex
z When all the bits arez
Z When some of the bits arez

vpiScalarVal scalar vpi1, vpi0, vpiX, vpiZ, vpiH, vpiL

vpiIntVal integer Integer value of the handle. Any bits x or z in the value
of the object are mapped to a 0

vpiRealVal real Value of the handle as a double

vpiStringVal str A string where each 8-bit group of the value of the
object is assumed to represent an ASCII character

vpiTimeVal time Integer value of the handle using two integers

vpiVectorVal vector aval/bvalrepresentation of the value of the object

vpiStrengthVal strength Value plus strength information of a scalar object only

vpiObjectVal — Return a value in the closest format of the object

NOTE—If the object has a real value, it shall be converted to an integer using the rounding defined by the Verilog
HDL before being returned in a format other thanvpiRealVal.
24-19
 Standards Draft, subject to change.



OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

ts from
PTF-1305
char *target;
{

static s_vpi_value value_s = {vpiBinStrVal};
static p_vpi_value value_p = &value_s;
vpiHandle net, itr;

itr = vpi_iterate(vpiNet, mod);
while (net = vpi_scan(itr))
{

char *net_name = vpi_get_str(vpiName, net);
if (strcmp(target, net_name) == 0)
{

vpi_get_value(net, value_p);
vpi_printf(“Value of net %s: %s\n”,

vpi_get_str(vpiFullName, net),value_p->value.str);
}

}
}

The following example illustrates the use of vpi_get_value() to access UDP table entries. Two sample outpu
this example are provided after the example.

/*
 * hUDP must be a handle to a UDP definition
 */
static void dumpUDPTableEntries(vpiHandle hUDP)
{
  vpiHandle hEntry, hEntryIter;
  s_vpi_value value;
  int numb;
  int udpType;
  int item;
  int entryVal;
  int *abItem;
  int cnt, cnt2;
  numb = vpi_get(vpiSize, hUDP);
  udpType = vpi_get(vpiPrimType, hUDP);
  if (udpType == vpiSeqPrim)
    numb++; /* There is one more table entry for state */
  numb++;   /* There is a table entry for the output */
  hEntryIter = vpi_iterate(vpiTableEntry, hUDP);
  if (!hEntryIter)
    return;
  value.format = vpiVectorVal;
  while(hEntry = vpi_scan(hEntryIter))
    {
      vpi_printf("\n");
      /* Show the entry as a string */
      value.format = vpiStringVal;
      vpi_get_value(hEntry, &value);
      vpi_printf("%s\n", value.value.str);
      /* Decode the vector value format */
      value.format = vpiVectorVal;
      vpi_get_value(hEntry, &value);
      abItem = (int *)value.value.vector;
      for(cnt=((numb-1)/2+1);cnt>0;cnt--)
24-20
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          entryVal = *abItem;

          abItem++;

          /* Rip out 4 characters */

          for (cnt2=0;cnt2<4;cnt2++)

            {

              item = entryVal&0xff;

              if (item)

                vpi_printf(“%c”, item);

              else

                vpi_printf(“_”);

              entryVal = entryVal>>8;

            }

        }

    }

  vpi_printf(“\n”);

}

For a UDP table of:

  1    0   :?:1;

  0   (01) :?:-;

  (10) 0   :0:1;

The output from the preceding example would be:

10:1

_0_1___1

01:0

_1_0___0

00:1

_0_0___1

For a UDP table entry of:

  1    0   :?:1;

  0   (01) :?:-;

  (10) 0   :0:1;

The output from the preceding example would be:

10:?:1

_0_1_1_?

0(01):?:-

10_0_-_?

(10)0:0:1

_001_1_0
24-21
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24.15   vpi_get_vlog_info()

The VPI routinevpi_get_vlog_info() shall obtain the following information about Verilog product execution:

— The number of invocation options (argc)
— Invocation option values (argv)
— Product and version strings

The information shall be contained in an s_vpi_vlog_info structure. The routine shall return true on success an
on failure.

The s_vpi_vlog_info structure used byvpi_get_vlog_info() is defined in vpi_user.h and is listed in Figure 24-10.

Figure 24-10—The s_vpi_vlog_info structure definition

vpi_get_vlog_info()

Synopsis: Retrieve information about Verilog simulation execution.

Syntax: vpi_get_vlog_info(vlog_info_p)

Type Description

Returns: bool true on success and false on failure

Type Name Description

Arguments: p_vpi_vlog_info vlog_info_p Pointer to a structure containing simulation information

typedef struct t_vpi_vlog_info {
int argc;
char **argv;
char *product;
char *version;

} s_vpi_vlog_info, *p_vpi_vlog_info;
24-22
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24.16 vpi_get_real()

The VPI routinevpi_get_real() shall be used to access node voltages, branch currents and other real v
properties from design objects.

This function is available to analog tasks and functions only.

vpi_get_real()

Synopsis: Fetch a real property value associated with an objact..

Syntax: vpi_get_real(prop,obj)

Type Description

Returns: double value of a real property

Type Name Description

Arguments: int prop An integer constant representing the property of an objec
for which to obtain a value

vpiHandle obj Handle to an object
24-23
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24.17   vpi_handle()

The VPI routinevpi_handle() shall return the object of typetype associated with objectref. The one-to-one
relationships that are traversed with this routine are indicated as single arrows in the data model diagrams.

The following example application displays each primitive that an input net drives.

void display_driven_primitives(net)
vpiHandle net;
{

vpiHandle load, prim, itr;
vpi_printf(“Net %s drives terminals of the primitives: \n”,

vpi_get_str(vpiFullName, net));
itr = vpi_iterate(vpiLoad, net);
if (!itr)

return;
while (load = vpi_scan(itr))
{

switch(vpi_get(vpiType, load))
{

case vpiGate:
case vpiSwitch:
case vpiUdp:

prim = vpi_handle(vpiPrimitive, load);
vpi_printf(“\t%s\n”, vpi_get_str(vpiFullName, prim));

}
}

}

vpi_handle()

Synopsis: Obtain a handle to an object with a one-to-one relationship.

Syntax: vpi_handle(type, ref)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: int type An integer constant representing the type of object for
which to obtain a handle

vpiHandle ref Handle to a reference object

Related
routines:

Use vpi_iterate() and vpi_scan() to obtain handles to objects with a one-to-many relationship
Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship
24-24
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24.18   vpi_handle_by_index()

The VPI routinevpi_handle_by_index()shall return a handle to an object based on the index number of the ob
within a parent object. This function can be used to access all objects that can access an expression usingvpiIndex.
Argumentobj shall represent the parent of the indexed object. For example, to access a net-bit,obj would be the
associated net, while for a memory word,obj would be the associated memory.

vpi_handle_by_index()

Synopsis: Get a handle to an object using its index number within a parent object.

Syntax: vpi_handle_by_index(obj, index)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: vpiHandle obj Handle to an object

int index Index number of the object for which to obtain a handle
24-25
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24.19   vpi_handle_by_name()

The VPI routinevpi_handle_by_name()shall return a handle to an object with a specific name. This function can
applied to all objects with afullnameproperty. Thenamecan be hierarchical or simple. Ifscopeis NULL, thenname
shall be searched for from the top level of hierarchy. Otherwise,nameshall be searched for fromscopeusing the
scope search rules defined by the Verilog HDL.

vpi_handle_by_name()

Synopsis: Get a handle to an object with a specific name.

Syntax: vpi_handle_by_name(name, scope)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: char * name A character string or pointer to a string containing the
name of an object

vpiHandle scope Handle to a Verilog HDL scope
24-26
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24.20   vpi_handle_multi()

The VPI routinevpi_handle_multi() shall return a handle to objects of typevpiInterModPath associated with a list
of output portandinput port reference objects. The ports shall be of the same size and can be at different levels
hierarchy. This routine performs amany-to-one operation instead of the usual one-to-one or one-to-many.

vpi_handle_multi()

Synopsis: Obtain a handle to intermodule paths with a many-to-one relationship.

Syntax: vpi_handle_multi(type, ref1, ref2, ...)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: int type An integer constant representing the type of object for
which to obtain a handle

vpiHandle ref1, ref2, ... Handles to two or more reference objects

Related
routines:

Use vpi_iterate() and vpi_scan() to obtain handles to objects with a one-to-many relationship
Use vpi_handle() to obtain handles to objects with a one-to-one relationship
24-27
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24.21   vpi_iterate()

The VPI routinevpi_iterate() shall be used to traverse one-to-many relationships, which are indicated as d
arrows in the data model diagrams. Thevpi_iterate() routine shall return a handle to an iterator, whose type shall
vpiIterator , which can used byvpi_scan()to traverse all objects of typetypeassociated with objectref. To get the
reference object from the iterator object usevpi_handle(vpiUse, iterator_handle). If there are no objects of type
type associated with the reference handleref, then thevpi_iterate() routine shall return NULL.

The following example application usesvpi_iterate() and vpi_scan() to display each net (including the size fo
vectors) declared in the module. The example assumes it shall be passed a valid module handle.

void display_nets(mod)
vpiHandle mod;
{

vpiHandle net;
vpiHandle itr;

vpi_printf(“Nets declared in module %s\n”,
vpi_get_str(vpiFullName, mod));

itr = vpi_iterate(vpiNet, mod);
while (net =vpi_scan(itr))
{

vpi_printf(“\t%s”, vpi_get_str(vpiName, net));
if (vpi_get(vpiVector, net))
{

vpi_printf(“ of size %d\n”, vpi_get(vpiSize, net));
}
else vpi_printf(“\n”);

}
}

vpi_iterate()

Synopsis: Obtain an iterator handle to objects with a one-to-many relationship.

Syntax: vpi_iterate(type, ref)

Type Description

Returns: vpiHandle Handle to an iterator for an object

Type Name Description

Arguments: int type An integer constant representing the type of object for
which to obtain iterator handles

vpiHandle ref Handle to a reference object

Related
routines:

Use vpi_scan() to traverse the HDL hierarchy using the iterator handle returned from vpi_iterate()
Use vpi_handle() to obtain handles to object with a one-to-one relationship
Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship
24-28
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24.22   vpi_mcd_close()

The VPI routinevpi_mcd_close()shall close the file(s) specified by a multichannel descriptor,mcd. Several channels
can be closed simultaneously, since channels are represented by discrete bits in the integermcd. On success this
routine returns a 0; on error it returns themcd value of the unclosed channels.

The following descriptors are predefined, and cannot be closed using vpi_mcd_close():

— descriptor 1 isstdout
— descriptor 2 isstderr
— descriptor 3 is the current log file

vpi_mcd_close()

Synopsis: Close one or more files opened by vpi_mcd_open().

Syntax: vpi_mcd_close(mcd)

Type Description

Returns: unsigned int 0 if successful, the mcd of unclosed channels if unsuccessful

Type Name Description

Arguments: unsigned int mcd A multichannel descriptor representing the files to close

Related
routines:

Use vpi_mcd_open() to open a file
Use vpi_mcd_printf() to write to an opened file
Use vpi_mcd_name() to get the name of a file represented by a channel descriptor
24-29
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24.23   vpi_mcd_name()

The VPI routinevpi_mcd_name()shall return the name of a file represented by a single-channel descriptor,cd. On
error, the routine shall return NULL. This routine shall overwrite the returned value on subsequent calls.
application needs to retain the string, it should copy it.

vpi_mcd_name()

Synopsis: Get the name of a file represented by a channel descriptor.

Syntax: vpi_mcd_name(cd)

Type Description

Returns: char * Pointer to a character string containing the name of a file

Type Name Description

Arguments: unsigned int cd A single-channel descriptor representing a file

Related
routines:

Use vpi_mcd_open() to open a file
Use vpi_mcd_close() to close files
Use vpi_mcd_printf() to write to an opened file
24-30
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24.24   vpi_mcd_open()

The VPI routinevpi_mcd_open()shall open a file for writing and return a corresponding multichannel descrip
number (mcd). The following channel descriptors are predefined and shall be automatically opened by the sys

— Descriptor 1 isstdout
— Descriptor 2 isstderr
— Descriptor 3 is the current log file

Thevpi_mcd_open()routine shall return a0 on error. If the file is already opened,vpi_mcd_open()shall return the
descriptor number.

vpi_mcd_open()

Synopsis: Open a file for writing.

Syntax: vpi_mcd_open(file)

Type Description

Returns: unsigned int A multichannel descriptor representing the file that was opened

Type Name Description

Arguments: char * file A character string or pointer to a string containing the file
name to be opened

Related
routines:

Use vpi_mcd_close() to close a file
Use vpi_mcd_printf() to write to an opened file
Use vpi_mcd_name() to get the name of a file represented by a channel descriptor
24-31
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24.25   vpi_mcd_printf()

The VPI routinevpi_mcd_printf() shall write to one or more channels (up to 32) determined by themcd. An mcdof
1 (bit 0 set) corresponds to Channel 1, amcd of 2 (bit 1 set) corresponds to Channel 2, amcd of 4 (bit 2 set)
corresponds to Channel 3, and so on. Channel 1 isstdout, channel 2 isstderr, and channel 3 is the current log file
Several channels can be written to simultaneously, since channels are represented by discrete bits in the intemcd.
The format strings shall use the same format as the C fprintf() routine.The routine shall return the num
characters printed, or EOF if an error occurred.

vpi_mcd_printf()

Synopsis: Write to one or more files opened with vpi_mcd_open().

Syntax: vpi_mcd_printf(mcd, format, ...)

Type Description

Returns: int The number of characters written

Type Name Description

Arguments: unsigned int mcd A multichannel descriptor representing the files to which t
write

char * format A format string using the C fprintf() format

Related
routines:

Use vpi_mcd_open() to open a file
Use vpi_mcd_close() to close a file
Use vpi_mcd_name() to get the name of a file represented by a channel descriptor
24-32
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24.26   vpi_printf()

The VPI routinevpi_printf() shall write to bothstdoutand the current product log file. The format string shall use t
same format as the C printf() routine. The routine shall return the number of characters printed, or EOF if an
occurred.

vpi_printf()

Synopsis: Write to stdout and the current product log file.

Syntax: vpi_printf(format, ...)

Type Description

Returns: int The number of characters written

Type Name Description

Arguments: char * format A format string using the C printf() format

Related
routines:

Use vpi_mcd_printf() to write to an opened file
24-33
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24.27   vpi_put_delays()

The VPI routinevpi_put_delays() shall set the delays or timing limits of an object as indicated in thedelay_p
structure. The same ordering of delays shall be used as described in thevpi_get_delays()function. If only the delay
changes, and not the pulse limits, the pulse limits shall retain the values they had before the delays where al

The s_vpi_delay and s_vpi_time structures used by bothvpi_get_delays()and vpi_put_delays() are defined in
vpi_user.h and are listed in Figures 24-11 and 24-12.

Figure 24-11—The s_vpi_delay structure definition

Figure 24-12—The s_vpi_time structure definition

Thedafield of the s_vpi_delay structure shall be a user-allocated array of s_vpi_time structures. This array sha
the delay values to be written byvpi_put_delays(). The number of elements in this array shall be determined by:

— The number of delays to be retrieved

vpi_put_delays()

Synopsis: Set the delays or timing limits of an object.

Syntax: vpi_put_delays(obj, delay_p)

Type Description

Returns: void

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_delay delay_p Pointer to a structure containing delay information

Related
routines:

Use vpi_get_delays() to retrieve delays or timing limits of an object

typedef struct t_vpi_delay {
struct t_vpi_time *da; /* ptr to user allocated array of delay

values */
int no_of_delays; /* number of delays */
int time_type; /* [vpiScaledRealTime, vpiSimTime] */
bool mtm_flag; /* true for mtm */
bool append_flag; /* true for append, false for replace */
bool pulsere_flag; /* true for pulsere values */

} s_vpi_delay, *p_vpi_delay;

typedef struct t_vpi_time
{

int type; /* [vpiScaledRealTime, vpiSimTime] */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;
24-34
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— Themtm_flag setting
— Thepulsere_flag setting

The number of delays to be retrieved shall be set in theno_of_delaysfield of the s_vpi_delay structure. Legal value
for the number of delays shall be determined by the type of object.

— For primitive objects, theno_of_delays value shall be 2 or 3.
— For path delay objects, theno_of_delays value shall be 1, 2, 3, 6, or 12.
— For timing check objects, theno_of_delaysvalue shall match the number of limits existing in the timin

check.
— For intermodule path objects, theno_of_delays value shall be 2 or 3.

The user allocated s_vpi_delay array shall contain delays in the same order in which they occur in the Verilo
description. The number of elements for each delay shall be determined by the flagsmtm_flag andpulsere_flag, as
shown in Table 24-2.

The following example application accepts a module path handle, rise and fall delays, and replaces the delay
indicated path.

void set_path_rise_fall_delays(path, rise, fall)
vpiHandle path;
double rise, fall;
{

static s_vpi_time path_da[2];
static s_vpi_delay delay_s = {NULL, 2, vpiScaledRealTime};
static p_vpi_delay delay_p = &delay_s;

delay_s.da = &path_da;

Table 24-4—Size of the s_vpi_delay->da array

Flag values Number of s_vpi_time array elements
required for s_vpi_delay->da

Order in which delay elements
shall be filled

mtm_flag = false
pulsere_flag = false no_of_delays

1st delay: da[0] -> 1st delay
2nd delay: da[1] -> 2nd delay
...

mtm_flag = true
pulsere_flag = false 3 *no_of_delays

1st delay: da[0] -> min delay
           da[1] -> typ delay
           da[2] -> max delay
2nd delay: ...

mtm_flag = false
pulsere_flag = true 3 *no_of_delays

1st delay: da[0] -> delay
           da[1] -> reject limit
           da[2] -> error limit
2nd delay element: ...

mtm_flag = true
pulsere_flag = true 9 *no_of_delays

1st delay: da[0] -> min delay
           da[1] -> typ delay
           da[2] -> max delay
           da[3] -> min reject
           da[4] -> typ reject
           da[5] -> max reject
           da[6] -> min error
           da[7] -> typ error
           da[8] -> max error
2nd delay: ...
24-35
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path_da[0].real = rise;
path_da[1].real = fall;

vpi_put_delays(path, delay_p);
}

24-36
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24.28 vpi_put_deriv()

The VPI routinevpi_put_deriv() shall be used to add a value to a partial derivative which has been declared
vpi_declare_deriv() in the compile_tf call back. This function should be called from the call_tf callback only, a
may be called only to contribute to partial derivatives which have been previously declared. Calls for deriv
which have not been declared will be ignored. Thevpi_put_deriv() should be used to assign a value to all derivativ
which have been declared.

This function is available to analog tasks and functions only.

vpi_put_deriv()

Synopsis: Set the value of a partial derivative of one argument or return value with respect to another.

Syntax: vpi_put_deriv(var,wrt,value)

Type Description

Returns:

Type Name Description

Arguments: int var

int wrt

double value
24-37
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24.29 vpi_put_value()

The VPI routinevpi_put_value() shall set simulation logic values on an object. The value to be set shall be stor
an s_vpi_value structure that has been allocated. The delay time before the value is set shall be store
s_vpi_time structure that has been allocated. The routine can be applied to nets, regs, variables, memory
system function calls, sequential UDPs, and schedule events. Theflagsargument shall be used to direct the routine
use one of the following delay modes:

vpiInertialDelay All scheduled events on the object shall be removed before this event is sched

vpiTransportDelay All events on the object scheduled for times later than this event shall be remo
(modified transport delay).

vpiPureTransportDelay No events on the object shall be removed (transport delay).

vpiNoDelay The object shall be set to the passed value with no delay. Argumenttime_pshall be
ignored and can be set to NULL.

vpiForceFlag The object shall be forced to the passed value with no delay (same as the Ve
HDL proceduralforce). Argumenttime_pshall be ignored and can be set to NULL

vpiReleaseFlag The object shall be released from a forced value (same as the Verilog H
proceduralrelease). Argumenttime_pshall be ignored and can be set to NULL
Thevalue_p shall contain the current value of the object.

vpiCancelEvent A previously scheduled event shall be cancelled. The object passed
vpi_put_value() shall be a handle to an object of typevpiSchedEvent.

If the flags argument also has the bit maskvpiReturnEvent, vpi_put_value() shall return a handle of type
vpiSchedEventto the newly scheduled event, provided there is some form of a delay and an event is scheduled
bit mask is not used, or if no delay is used, or if an event is not scheduled, the return value shall be NULL.

The handle to the event can be cancelled by callingvpi_put_value()with the flag set tovpiCancelEvent. It shall not
be an error to cancel an event that has already occurred. The scheduled event can be tested by callingvpi_get() with
the flagvpiScheduled. If an event is cancelled, it shall simply be removed from the event queue. Any effects
were caused by scheduling the event shall remain in effect (e.g., events that where cancelled due to inertial d

vpi_put_value()

Synopsis: Set a value on an object.

Syntax: vpi_put_value(obj, value_p, time_p, flags)

Type Description

Returns: vpiHandle Handle to the scheduled event caused by vpi_put_value()

Type Name Description

Arguments: vpiHandle obj Handle to an object

p_vpi_value value_p Pointer to a structure with value information

p_vpi_time time_p Pointer to a structure with delay information

int flags Integer constants that set the delay mode

Related
routines:

Use vpi_get_value() to retrieve the value of an expression
24-38
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Callingvpi_free_object()on the handle shall free the handle but shall not effect the event.

Sequential UDPs shall be set to the indicated value with no delay regardless of any delay on the primitive ins

NOTE—vpi_put_value() shall only return a function value in a calltf application, when the call to the function is active. The a
of vpi_put_value() to a function shall be ignored when the function is not active.

The s_vpi_value and s_vpi_time structures used byvpi_put_value() are defined in vpi_user.h and are listed i
Figures 24-13 and 24-14.

Figure 24-13—The s_vpi_value structure definition

Figure 24-14—The s_vpi_time structure definition

For vpiScaledRealTime, the indicated time shall be in the timescale associated with the object.

typedef struct t_vpi_value {
int format; /* vpi[[Bin,Oct,Dec,Hex]Str,Scalar,Int,Real,String,

Time,Vector,Strength,ObjType]Val*/
union {

char *str;
int scalar; /* vpi[0,1,X,Z] */
int integer;
double real;
struct t_vpi_time *time;
struct t_vpi_vecval *vector;
struct t_vpi_strengthval *strength;
char *misc;

} value;
} s_vpi_value, *p_vpi_value;

typedef struct t_vpi_time {
int type; /* for vpiScaledRealTime, vpiSimTime */
unsigned int high, low; /* for vpiSimTime */
double real; /* for vpiScaledRealTime */

} s_vpi_time, *p_vpi_time;
24-39
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24.30   vpi_register_cb()

The VPI routinevpi_register_cb() is used for registration of simulation-related callbacks to a user-provid
application for a variety of reasons during a simulation. The reasons for which a callback can occur are divide
three categories:

— Simulation event
— Simulation time
— Simulation action or feature

How callbacks are registered for each of these categories is explained in the following paragraphs.

Thecb_data_pargument shall point to a s_cb_data structure, which is defined in vpi_user.h and given in Figu
15.

Figure 24-15—The s_cb_data structure definition

For all callbacks, thereason field of the s_cb_data structure shall be set to a predefined constant, suc
cbValueChange, cbAtStartOfSimTime , cbEndOfCompile, etc. The reason constant shall determine when the u
application shall be called back. Refer to the vpi_user.h file listing inAnnex C for alist of all callback reason
constants.

Thecb_rtnfield of the s_cb_data structure shall be set to the application routine name, which shall be invoked
the simulator executes the callback. The use of the remaining fields are detailed in the following subclauses.

vpi_register_cb()

Synopsis: Register simulation-related callbacks.

Syntax: vpi_register_cb(cb_data_p)

Type Description

Returns: vpiHandle Handle to the callback object

Type Name Description

Arguments: p_cb_data cb_data_p Pointer to a structure with data about when callbacks
should occur and the data to be passed

Related
routines:

Use vpi_register_systf() to register callbacks for user-defined system tasks and functions
Use vpi_remove_cb() to remove callbacks registered with vpi_register_cb()

typedef struct t_cb_data {
int reason;
int (*cb_rtn)();
vpiHandle obj;
p_vpi_time time; /* structure defined in vpi_user.h */
p_vpi_value value; /* structure defined in vpi_user.h */
int index; /* index of memory word or var select which changed */
char *user_data; /* user data to be passed to callback function */

} s_cb_data, *p_cb_data;
24-40
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24.30.1   Simulation-event-related callbacks

The vpi_register_cb() callback mechanism can be registered for callbacks to occur for simulation events, su
value changes on an expression or terminal, or the execution of a behavioral statement. When thecb_data_p->reason
field is set to one of the following, the callback shall occur as described below:

cbValueChange After value change on an expression or terminal

cbStmt Before execution of a behavioral statement

cbForce/cbRelease After a force or release has occurred

cbAssign/cbDeassign After a procedural assign or deassign statement has been executed

cbDisable After a named block or task containing a system task or function has been disab

The following fields shall need to be initialized before passing the s_cb_data structure tovpi_register_cb():

cb_data_p->obj This field shall be assigned a handle to an expression, terminal, or statemen
which the callback shall occur. For force and release callbacks, if this is se
NULL, every force and release shall generate a callback.

cb_data_p->time->type This field shall be set to eithervpiScaledRealTimeor vpiSimTime, depending on
what time information the user application requires during the callback.
simulation time information is not needed during the callback, this field can be
to vpiSuppressTime.

cb_data_p->value->format This field shall be set to one of the value formats indicated in Table 24-5. If va
information is not needed during the callback, this field can be set
vpiSuppressVal. For cbStmt callbacks, value information is not passed to th
callback routine, so this field shall be ignored.

When a simulation event callback occurs, the user application shall be passed a single argument, which is a p
an s_cb_data structure [this is not a pointer to the same structure that was passed tovpi_register_cb()]. The timeand

Table 24-5—Value format field of cb_data_p->value->format

Format Registers a callback to return

vpiBinStrVal String of binary char(s) [1, 0, x, z]

vpiOctStrVal String of octal char(s) [0–7, x, X, z, Z]

vpiDecStrVal String of decimal char(s) [0–9]

vpiHexStrVal String of hex char(s) [0–f, x, X, z, Z]

vpiScalarVal vpi1, vpi0, vpiX, vpiZ, vpiH, vpiL

vpiIntVal Integer value of the handle

vpiRealVal Value of the handle as a double

vpiStringVal An ASCII string

vpiTimeVal Integer value of the handle using two integers

vpiVectorVal aval/bval representation of the value of the object

vpiStrengthVal Value plus strength information of a scalar object only

vpiObjectVal Return a value in the closest format of the object
24-41
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valueinformation shall be set as directed by the timetypeandvalueformat fields in the call tovpi_register_cb(). The
user_datafield shall be equivalent to theuser_datafield passed tovpi_register_cb(). The user application can use
the information in the passed structure and information retrieved from other VPI interface routines to perfor
desired callback processing.

For acbValueChangecallback, if theobj is a memory word or a variable array, thevaluein the s_cb_data structure
shall be the value of the memory word or variable select that changed value. Theindexfield shall contain the index of
the memory word or variable select that changed value.

For cbForce, cbRelease, cbAssignandcbDeassigncallbacks, the object returned in theobj field shall be a handle to
the force, release, assign or deassign statement. Thevalue field shall contain the resultant value of the LHS
expression. In the case of a release, thevalue field shall contain the value after the release has occurred.

The following example shows an implementation of a simple monitor functionality for scalar nets, usi
simulation-event-related callback.

setup_monitor(net)
vpiHandle net;
{

static s_vpi_time time_s = {vpiScaledRealTime};
static s_vpi_value value_s = {vpiBinStrVal};
static s_cb_data cb_data_s =

{cbValueChange, my_monitor, NULL, &time_s, &value_s};
char *net_name = vpi_get_str(vpiFullName, net);
cb_data_s.obj = net;
cb_data_s.user_data = malloc(strlen(net_name)+1);
strcpy(cb_data_s.user_data, net_name);
vpi_register_cb(&cb_data_s);

}

my_monitor(cb_data_p)
p_cb_data cb_data_p; {

vpi_printf(“%d %d: %s = %s\n”,
cb_data_p->time->high, cb_data_p->time->low,
cb_data_p->user_data,
cb_data_p->value->value.str);

}

24.30.2   Simulation-time-related callbacks

Thevpi_register_cb()can register callbacks to occur for simulation time reasons, include callbacks at the begi
or end of the execution of a particular time queue. The following time-related callback reasons are defined:

cbAtStartOfSimTime Callback shall occur before execution of events in a specified time queue
callback can be set for any time, even if no event is present.

cbReadWriteSynch Callback shall occur after execution of events for a specified time.

cbReadOnlySynch Same ascbReadWriteSynch, except that writing values or scheduling even
before the next scheduled event is not allowed.

cbNextSimTime Callback shall occur before execution of events in the next event queue.

cbAfterDelay Callback shall occur after a specified amount of time, before execution of even
a specified time queue. A callback can be set for anytime, even if no even
present.

The following fields shall need to be set before passing the s_cb_data structure tovpi_register_cb():
24-42
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cb_data_p->time->type This field shall be set to eithervpiScaledRealTimeor vpiSimTime, depending on
what time information the user application requires during the callback.

cb_data_p->[time->low,time->high,time->real]
These fields shall contain the requested time of the callback or the delay befor
callback.

Thevalue fields are ignored for all reasons with simulation-time-related callbacks.

When thecb_data_p->time->typeis set tovpiScaledRealTime, thecb_data_p->objfield shall be used as the objec
for determining the time scaling.

For reasoncbNextSimTime, the time structure is ignored.

When a simulation-time-related callback occurs, the user callback application shall be passed a single arg
which is a pointer to an s_cb_data structure [this is not a pointer to the same structure that was pas
vpi_register_cb()]. The time structure shall contain the current simulation time. Theuser_datafield shall be
equivalent to theuser_data field passed tovpi_register_cb().

The callback application can use the information in the passed structure and information retrieved from
interface routines to perform the desired callback processing.

24.30.3   Simulator action and feature related callbacks

The vpi_register_cb() can register callbacks to occur for simulator action reasons or simulator feature rea
Simulator action reasonsare callbacks such as the end of compilation or end of simulation.Simulator feature reasons
are software-product-specific features, such as restarting from a saved simulation state or entering an int
mode. Actions are differentiated from features in that actions shall occur in all VPI-compliant products, wh
features might not exist in all VPI-compliant products.

The following action-related callbacks shall be defined:

cbEndOfCompile End of simulation data structure compilation or build

cbStartOfSimulation Start of simulation (beginning of time 0 simulation cycle)

cbEndOfSimulation End of simulation (e.g., $finish system task executed)

cbError Simulation run-time error occurred

cbPLIError Simulation run-time error occurred in a PLI function call

cbTchkViolation Timing check error occurred

Examples of possible feature related callbacks are

cbStartOfSave Simulation save state command invoked

cbEndOfSave Simulation save state command completed

cbStartOfRestart Simulation restart from saved state command invoked

cbEndOfRestart Simulation restart command completed

cbEnterInteractive Simulation entering interactive debug mode (e.g., $stop system task executed

cbExitInteractive Simulation exiting interactive mode

cbInteractiveScopeChange Simulation command to change interactive scope executed

cbUnresolvedSystf Unknown user-defined system task or function encountered

The only fields in the s_cb_data structure that shall need to be setup for simulation action/feature callbacks
reason, cb_rtn, anduser_data (if desired) fields.
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When a simulation action/feature callback occurs, the user routine shall be passed a pointer to an s_cb_data s
The reasonfield shall contain the reason for the callback. ForcbTchkViolation callbacks, theobj field shall be a
handle to the timing check. ForcbInteractiveScopeChange, obj shall be a handle to the new scope. Fo
cbUnresolvedSystf, user_datashall point to the name of the unresolved task or function. On acbError callback, the
routinevpi_chk_error()  can be called to retrieve error information.

The following example shows a callback application that reports cpu usage at the end of a simulation. If th
routine setup_report_cpu() is placed in the vlog_startup_routines list, it shall be called just after the simul
invoked.

static int initial_cputime_g;

void report_cpu()
{

int total = get_current_cputime() - initial_cputime_g;
vpi_printf(“Simulation complete. CPU time used: %d\n”, total);

}

void setup_report_cpu()
{

static s_cb_data cb_data_s = {cbEndOfSimulation, report_cpu};
initial_cputime_g = get_current_cputime();
vpi_register_cb(&cb_data_s);

}

24-44
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24.31 vpi_register_acb()

The VPI routinevpi_register_acb()is used for registration of analog simulation-related callbacks to a user-prov
application for a variety of reasons during a simulation. The reasons for which a callback can occur are divide
three categories:

— Threshold crossing of a potential or flow
— Simulation time
— Simulation action or feature

How callbacks are registered for each of these categories is explained in the following paragraphs.

Theacb_data_pargument shall point to a s_acb_data structure, which is defined in vpi_user.h and given in Figu
15.

Figure 24-16—The s_acb_data structure definition

For all callbacks, thereason field of the s_cb_data structure shall be set to a predefined constant, suc
cbThreshold, cbAtStartOfSimTime , cbEndOfCompile, etc. The reason constant shall determine when the u
application shall be called back. Refer to the vpi_user.h file listing inAnnex C for alist of all callback reason
constants. Some reasons are not valid for analog simulation related callbacks.

vpi_register_acb()

Synopsis: Register analog simulation-related callbacks.

Syntax: vpi_register_acb(acb_data_p)

Type Description

Returns: vpiHandle Handle to the callback object

Type Name Description

Arguments: p_acb_data acb_data_p Pointer to a structure with data about when callbacks
should occur and the data to be passed

Related
routines:

Use vpi_register_systf() to register callbacks for user-defined system tasks and functions
Use vpi_remove_acb() to remove callbacks registered with vpi_register_acb()

typedef struct t_acb_data {
int reason; /* acbAbsTime, acbElapsedTime, acbThreshold, ... */
int (*acb_rtn)(); /* function to be called */
vpiHandle obj; /* handle of branch, node, analog variable */
int property; /*e.g. flow or potential, if obj is a branch */
double time; /* absolute or elapsed simulation time */
double value; /* threshold value */
double delta; /* time tolerance */
double epsilon; /* value tolerance */
int sign; /* crossing direction 1,0,-1 */
char *user_data; /* user data to be passed to callback function */

} s_acb_data, *p_acb_data;
24-45
 Standards Draft, subject to change.



OVI (Draft 1) Verilog-AMS HARDWARE DESCRIPTION LANGUAGE BASED ON Verilog

voked
uses.

ch as

e a

iven

sers

lback

the

n.

ointer to

ture

sons.

eractive
ereas

PTF-102

The acb_rtnfield of the s_acb_data structure shall be set to the application routine name, which shall be in
when the simulator executes the callback. The use of the remaining fields are detailed in the following subcla

24.31.1 Simulation-event-related callbacks

The vpi_register_acb()callback mechanism can be registered for callbacks to occur for simulation events, su
threshold crossing of a flow or potential , or acceptance of the initial or final analog solution. When theacb_data_p-
>reasonfield is set to one of the following, the callback shall occur as described below:

acbInitialStep Upon acceptance of the first analog solution

acbFinalStep Upon acceptance of the last analog solution

acbAbsTime Upon acceptance of the analog solution for the given time (this callback will forc
solution at that time)

acbElapsedTime Upon acceptance of the solution advanced from the current solution by the g
interval (this callback will force a solution at that time)

acbThreshold Upon threshold crossing of a variable, flow, or potential

The following field shall need to be initialized before passing the s_cb_data structure tovpi_register_cb():

acb_data_p->obj This field shall be assigned a handle to node, branch, or analog variable.

acb_data_p->property In the case of a branch of node this field shall be assignedvpiFlow or vpiPotential.

acb_data_p->user_data This field shall be assigned a handle to memory which may be used by the u
application..

For a acbAbsTime or acbElapsedTimecallback:

acb_data_p->time This field shall be assigned the value of absolute or elapsed time when the cal
should occur.

For a acbThresholdcallback:

acb_data_p->value This field shall be assigned the threshold value whose crossing will cause
callback.

acb_data_p->delta The callback will  occur within this tolerence of the actual crossing time.

acb_data_p->epsilon The callback will  occur within this tolerence of the actual crossing value.

acb_data_p->sign 1 = ascending crossing only, -1 = descending crossing only, 0 = either directio

When a simulation event callback occurs, the user application shall be passed a single argument, which is a p
an s_acb_data structure [this is not a pointer to the same structure that was passed tovpi_register_cb()]. The timeand
valueinformation shall be set to the values for the current analog solution. Theuser_datafield shall be equivalent to
theuser_datafield passed tovpi_register_cb(). The user application can use the information in the passed struc
and information retrieved from other VPI interface routines to perform the desired callback processing.

24.31.2 SSimulator action and feature related callbacks

The vpi_register_cb() can register callbacks to occur for simulator action reasons or simulator feature rea
Simulator action reasonsare callbacks such as the end of compilation or end of simulation.Simulator feature reasons
are software-product-specific features, such as restarting from a saved simulation state or entering an int
mode. Actions are differentiated from features in that actions shall occur in all VPI-compliant products, wh
features might not exist in all VPI-compliant products.

The following action-related callbacks shall be defined:
24-46
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cbEndOfCompile End of simulation data structure compilation or build

cbStartOfSimulation Start of simulation (beginning of time 0 simulation cycle)

cbEndOfSimulation End of simulation (e.g., $finish system task executed)

cbError Simulation run-time error occurred

cbPLIError Simulation run-time error occurred in a PLI function call

cbFailConverge Simulation terminated because of failure to converge

Examples of possible feature related callbacks are

cbStartOfSave Simulation save state command invoked

cbEndOfSave Simulation save state command completed

cbStartOfRestart Simulation restart from saved state command invoked

cbEndOfRestart Simulation restart command completed

cbEnterInteractive Simulation entering interactive debug mode (e.g., $stop system task executed

cbExitInteractive Simulation exiting interactive mode

cbInteractiveScopeChange Simulation command to change interactive scope executed

cbUnresolvedSystf Unknown user-defined system task or function encountered

The only fields in the s_scb_data structure that shall need to be setup for simulation action/feature callbacks
reason, cb_rtn, anduser_data (if desired) fields.

When a simulation action/feature callback occurs, the user routine shall be passed a pointer to an s_a
structure. Thereasonfield shall contain the reason for the callback. ForcbInteractiveScopeChange, obj shall be a
handle to the new scope. ForcbUnresolvedSystf, user_datashall point to the name of the unresolved task
function. On acbError  callback, the routinevpi_chk_error()  can be called to retrieve error information.
24-47
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24.32 vpi_register_systf()

The VPI routinevpi_register_systf()shall register callbacks for user-defined system tasks or functions. Callb
can be registered to occur when a user-defined system task or function is encountered during compila
execution of Verilog HDL source code. Tasks or functions may be registered with either the analog or digital do
The domain with which the task or function is registered will determine the context or contexts from which the ta
function may be invoked and how and when the call backs associated with the function will be called. The t
function name must be unique in the domain in which it is registered. That is, the same name may be shared
sets of callbacks, provided that one set is registered in the digital domain and the other is registered in the an

The systf_data_pargument shall point to a s_vpi_systf_data structure, which is defined in vpi_user.h and list
Figure 24-17.

Figure 24-17—The s_vpi_systf_data structure definition

24.32.1   System task and function callbacks

User-defined Verilog system tasks and functions that use VPI routines can be registered withvpi_register_systf().
The following system task/function-related callbacks are defined.

The typefield of the s_vpi_systf_data structure shall register the user application to be a system task or a
function. The type field value shall be an integer constant ofvpiSysTask ,vpiSysTaskA, vpiSysFunction or
vpiSysFunctionA . vpiSysTaskwill register a task with the digital domain.vpiSysTaskAwill register a task with the
analog domain.vpiSysFunction will register a function with the digital domain.vpiSysFunctionA will register a
function with the analog domain.

vpi_register_systf()

Synopsis: Register user-defined system task/function-related callbacks.

Syntax: vpi_register_systf(systf_data_p)

Type Description

Returns: vpiHandle Handle to the callback object

Type Name Description

Arguments: p_vpi_systf_data systf_data_p Pointer to a structure with data about when callbacks
should occur and the data to be passed

Related
routines:

Use vpi_register_cb() to register callbacks for simulation-related events

typedef struct t_vpi_systf_data {
int type; /* vpiSys[Task,TaskA,Function,FunctionA] */
int sysfunctype; /* vpi[IntFunc,RealFunc,TimeFunc,SizedFunc] */
char *tfname; /* first character must be “$” */
int (*calltf)();
int (*compiletf)();
int (*sizetf)(); /* for vpiSizedFunc system functions only */
char *user_data;

} s_vpi_systf_data, *p_vpi_systf_data;
24-48
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The sysfunctypefield of the s_vpi_systf_data structure shall define the type of value that a system function
return. The sysfunctypefield shall be an integer constant ofvpiIntFunc , vpiRealFunc, vpiTimeFunc, or
vpiSizedFunc. This field shall only be used when thetype field is set tovpiSysFunction.

The compiletf, calltf, and sizetf fields of the s_vpi_systf_data structure shall be pointers to the user-prov
applications that are to be invoked by the system task/function callback mechanism. One or more of the com
calltf, and sizetf fields can be set to NULL if they are not needed. Callbacks to the applications pointed to
compiletf and sizetf fields shall occur when the simulation data structure is compiled or built (or for the
invocation if the system task or function is invoked from an interactive mode). Callbacks to the application poin
by thecalltf routine shall occur each time the system task or function is invoked during simulation execution.

The sizetf application shall only called if the PLI application type isvpiSysFunction and thesysfunctypeis
vpiSizedFunc. If no sizetf is provided, a user-defined system function ofvpiSizedFunc shall return 32-bits.

Theuser_datafield of the s_vpi_systf_data structure shall specify a user-defined value, which shall be passed b
the compiletf, sizetf, and calltf applications when a callback occurs.

The following example application demonstrates dynamic linking of a VPI system task. The example us
imaginary routine, dlink(), which accepts a file name and a function name and then links that function dynam
This routine derives the target file and function names from the targetsystf name.

link_systf(target)
char *target;
{

char task_name[strSize];
char file_name[strSize];
char compiletf_name[strSize];
char calltf_name[strSize];
static s_vpi_systf_data task_data_s = {vpiSysTask};
static p_vpi_systf_data task_data_p = &task_data_s;

sprintf(task_name, “$%s”, target);
sprintf(file_name, “%s.o”, target);
sprintf(compiletf_name, “%s_compiletf”, target);
sprintf(calltf_name, “%s_calltf”, target);

task_data_p->tfname = task_name;
task_data_p->compiletf = (int (*)()) dlink(file_name,
  compiletf_name);
task_data_p->calltf = (int (*)()) dlink(file_name, calltf_name);
vpi_register_systf(task_data_p);

}

24.32.2   Initializing VPI system task/function callbacks

A means of initializing system task/function callbacks and performing any other desired task just after the sim
is invoked shall be provided by placing routines in a NULL-terminated static array,vlog_startup_routines. A
C function using the array definition shall be provided as follows:

void (*vlog_startup_routines[]) ();

This C function shall be provided with a VPI-compliant product. Entries in the array shall be added by the use
location of vlog_startup_routines and the procedure for linkingvlog_startup_routines with a software product
shall be defined by the product vendor. (Note that callbacks can also be registered or removed at any time du
application routine, not just at startup time).

This array of C functions shall be shall be for registering system tasks and functions. User tasks and functio
appear in a compiled description shall generally be registered by a routine in this array.
24-49
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The following example usesvlog_startup_routines to register system tasks and functions and to run a u
initialization routine.

/*In a vendor product file which contains vlog_startup_routines ...*/
extern void register_my_systfs();
extern void my_init();
void (*vlog_startup_routines[])() =
{

setup_report_cpu, /* user routine example in 23.24.3 */register_my_systfs,/* use
routine listed below */

0 /* must be last entry in list */
}

/* In a user provided file... */
void regiser_my_systfs()
{

static s_vpi_systf_data systf_data_list[] = {
{vpiSysTask, 0 “$my_task”, my_task_calltf, my_task_compiletf},
{vpiSysFunc, vpiIntFunc,”$my_func”, my_func_calltf, my_func_compiletf},
{vpiSysFunc, vpiRealFunc, “$my_real_func”, my_rfunc_calltf, my_rfunc_compiletf},
{0}

};
p_vpi_systf_data systf_data_p = &amp;(systf_data_list[0]);
while (systf_data_p-&gt;type)

vpi_register_systf(systf_data_p++);
}

24-50
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24.33   vpi_remove_cb()

The VPI routinevpi_remove_cb()shall remove callbacks that were registered withvpi_register_cb(). The argument
to this routine shall be a handle to the callback object. The routine shall return a1 (true) if successful, and a0 (false)
on a failure. Aftervpi_remove_cb() is called with a handle to the callback, the handle is no longer valid.

vpi_remove_cb()

Synopsis: Remove a simulation callback registered with vpi_register_cb().

Syntax: vpi_remove_cb(cb_obj)

Type Description

Returns: bool 1 (true) if successful;0 (false) on a failure

Type Name Description

Arguments: vpiHandle cb_obj Handle to the callback object

Related
routines:

Use vpi_register_cb() to register callbacks for simulation-related events
24-51
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24.34   vpi_scan()

The VPI routinevpi_scan()shall traverse the instantiated Verilog HDL hierarchy and return handles to objec
directed by the iteratoritr. The iterator handle shall be obtained by callingvpi_iterate() for a specific object type.
Oncevpi_scan() returns NULL, the iterator handle is no longer valid and cannot be used again.

The following example application usesvpi_iterate() and vpi_scan() to display each net (including the size fo
vectors) declared in the module. The example assumes it shall be passed a valid module handle.

void display_nets(mod)
vpiHandle mod;
{

vpiHandle net;
vpiHandle itr;

vpi_printf(“Nets declared in module %s\n”,
vpi_get_str(vpiFullName, mod));

itr = vpi_iterate(vpiNet, mod);
while (net =vpi_scan(itr))
{

vpi_printf(“\t%s”, vpi_get_str(vpiName, net));
if (vpi_get(vpiVector, net))
{

vpi_printf(“ of size %d\n”, vpi_get(vpiSize, net));
}
else vpi_printf(“\n”);

}
}

vpi_scan()

Synopsis: Scan the Verilog HDL hierarchy for objects with a one-to-many relationship.

Syntax: vpi_scan(itr)

Type Description

Returns: vpiHandle Handle to an object

Type Name Description

Arguments: vpiHandle itr Handle to an iterator object returned from vpi_iterate()

Related
routines:

Use vpi_iterate() to obtain an iterator handle
Use vpi_handle() to obtain handles to an object with a one-to-one relationship
Use vpi_handle_multi() to obtain a handle to an object with a many-to-one relationship
24-52
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Annex A

Scheduling Semantics

This annex presents semantics of smulation cycle for analog simulation as well as m
A/D simulation cycle.

A.1 Analog Simulation Cycle

Simulation of a network, or system, starts with an analysis of each node to develo
equations that define the complete set of values and flows in a network. Through
transient analysis, the value and flow equations are solved incrementally with respe
time. At each time increment, equations for each signal are iteratively solved until t
converge on a final solution.

A.1.1 Nodal Analysis

To describe a network, simulators combine constitutive relationships with Kirchho
laws innodal analysisto form a system of differential-algebraic equations of the for

These equations are a restatement of Kirchhoff’s Flow Law.

v is a vector containing all node values

t is time

q and i are the dynamic and static portions of the flow

f( ) is a vector containing the total flow out of each node

v0 is the vector of initial conditions

This equation was formulated by treating all nodes as being conservative (even s
flow nodes). In this way, signal-flow and conservative terminals can be connected
naturally. However, this results in unnecessary KFL equations for those nodes with
signal-flow terminals attached. This situation is easily recognized and those unnece
equations are eliminated along with the associated flow unknowns, which must be
definition zero.

f v t,( ) dq v t,( )
dt

------------------- i v t,( )+ 0= =

v 0( ) v0=
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A.1.2 Transient Analysis

The equation describing the network is differential and nonlinear, which makes it
impossible to solve directly. There are a number of different approaches to solving
problem numerically. However, all approaches discretize time and solve the nonli
equations iteratively.

The simulator replaces the time derivative operator (dq/dt) with a discrete-time finite
difference approximation. The simulation time interval is discretized and solved at
individual time points along the interval. The simulator controls the interval between
time points to ensure the accuracy of the finite difference approximation. At each 
point, a system of nonlinear algebraic equations is solved iteratively. Most circuit
simulators use the NR method to solve this system.
Version 1.4 Verilog-AMS Language Reference Manual A-2
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Figure A-1: Simulation Flowchart (Transient Analysis)

A.1.3 Convergence

In the analog kernel, the behavioral description is evaluated iteratively until the NR
method converges. On the first iteration, the signal values used in expressions ar
approximate and do not satisfy Kirchhoff’s laws.

No

Initialization
t <- 0

v(0) <- v0

Update time
t <- t + ∆t

Update values
v <- v + ∆v

Evaluate equations
f(v,t)  = residue

Converged?
residue <  e

∆v  < ∆

Yes

No
time step?
Accept the

$Display

Start Analysis

Done? (T = t )

Yes

No

Yes
End
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In fact, the initial values might not be reasonable, so you must write models that d
something reasonable even when given unreasonable signal values.

For example, if you compute the log or square root of a signal value, some signal va
cause the arguments to these functions to become negative, even though a real-w
system never exhibits negative values.

As the iteration progresses, the signal values approach the solution. Iteration con
until two convergence criteria are satisfied. The first criterion is that the proposed
solution on this iteration,v(j)(t), must be close to the proposed solution on the previo
iteration,v(j-1)(t), and

| vn
(j) - vn

(j-1) | < reltol (max(| vn
(j)| , |vn

(j-1)|)) + abstol

wherereltol is the relative tolerance andabstol is the absolute tolerance.

reltol is set as a simulator option and typically has a value of 0.001. There can be m
absolute tolerances, and which one is used depends on the quantity the signal repr
(volts, amps, and so on). The absolute tolerance is important whenvn is converging to
zero. Withoutabstol, the iteration never converges.

The second criterion ensures that Kirchhoff's flow law is satisfied:

wherefn
i(v(j)) is the flow exiting noden from branchi.

Both of these criteria specify the absolute tolerance to ensure that convergence is
precluded whenvn or fn(v) go to zero. While you can set the relative tolerance once in
options statement to work effectively on any node in the circuit, the absolute tolera
must be scaled appropriately for its associated signal. The absolute tolerance sho
the largest signal value that is considered negligible on all the signals with which i
associated.

The simulator uses absolute tolerance to get an idea of the scale of signals. Abso
tolerances are typically 1,000 to 1,000,000 times smaller than the largest typical v
for signals of a particular quantity. For example, in a typical integrated circuit, the larg
potential is about 5 volts, so the default absolute tolerance for voltage is 1µV. The largest
current is about 1mA, so the default absolute tolerance for current is 1pA.

A.2 Mixed-Signal Simualtion Cycle

This section describes the semantics of the initialization and time-sweep phases o
transient analysis in mixed-signal simulation cycle.

f n v j( )( )
n
∑ reltol max fin v j( )( )( )( ) abstol+<
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A.2.1 Circuit Initialization

The initialization phase of a transient analysis is the process of initializing the circ
state before advancing time.

A.2.2 dc_init Flag

Thedc_init global signal assumes a value of 1 at  the beginning of the initialization
process and transitions to zero when a stable state has been reached.

This allows for a Verilog-AMS module to be customized for the initialization and tim
sweep portions of a transient analysis.

module dcNand(out,a,b);
output out;
input  a, b;
reg out;

always begin
if  (!dc_init)

out = #5 ~(a && b);
else

out = ~(a && b);
end

endmodule

A.2.3 Transient Analysis & A/D Algorithm Synchronization

In the analog kernel time is a floating point value. In the digital kernel time is an inte
value. Hence A2D events will in general not occur exactly at digital integer clock tic

For the purpose of reporting results and scheduling delayed future events the digi
kernel truncates A2D events down to the earlier tick.

Any events that are scheduled with zero delay, as a result of the A2D, are not sna
down. Instead they are processed immediately.

Consequently an A2D event that results in a D2A event being scheduled with 0 de
should have its effect propagated back to the analog kernel with zero delay.
Version 1.4 Verilog-AMS Language Reference Manual A-5
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Example:

If this circuit is being simulated with a digital time resolution of 1e-9 (one nanoseco
then all digital events will be reported by the digital kernel as having occurred at a
integer multiple of 1e-9.

If connector A detects a positive threshold crossing the resulting falling edge at
connector B should be reported to the analog kernel with no further advance of an
time.

However the digital kernel may need to round the time of these events to the near
nanosecond. Thus:

If A detects a positive crossing as a result of a transient solution at time 5.27e-9 the
digital kernel will report a rising edge at A at time 5.0e-9 and falling edge at B at ti
5.0e-9, but the analog kernel will see the transition at B begin at time 5.27e-9

Connection modules

Zero delay inverter

A B

5 ns 6 ns

A

B

4 ns

analog

digital

analog

digital

signal

signal
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A.2.4 The Synchronization Loop

The digital and analog kernels will be synchronized in such a way that neither will
compute results which the other is ineligible to accept. The synchronization algori
may exploit characteristics of the analog and digital kernels described in the next sec
A sample run is shown here:

1. Analog engine begins transient analysis and sends state information to the D
engine (1,2)

2. Digital engine begins to run using its own time steps (3); however, if there is
D2A event, the Analog engine is not notified and the digital engine continue
simulate to until it cannot advance its time without surpassing the time of th
analog solution (4). Control of the simulation is then returned to the analog
engine (5). The process is repeated (7,8,9,10, and 11).

3. If the Digital engine produces a D2A event (12), control of the simulation is
returned to the Analog engine (13). The analog engine returns to the point 
which the digital engine last surrendered control (14). The Analog engine
recalculates the analog solution up to the time when the D2A event occurred
The Analog engine then takes the next time step (16).

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

etc.

D2A

A2D

T1 T2 T3 T4 T5 T6

ANALOG

DIGITAL
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4. If the analog engine produces an A2D event it returns control to the Digital
engine (17), which simulates up to the time of the A2D event and then surren
control (18 and 19).

5. This process continues until transient analysis is complete.

A.2.5 Assumptions about the Analog and Digital Algorithms

1. Advance of time in digital algorithm

• The digital simulation has some minimum time granularity and all
digital events occur at a time that is some integer multiple of
 that granularity

• The digital simulator can always accept events for a given simulation time
provided only that it has not yet executed events for a later time. Once it exec
events for a given time it cannot accept events for an earlier time.

• The digital simulator can always report the time of the most recently execu
event, and the time of the next pending event.

2. Advance of time in analog algorithm

• The analog simulator advances time by calculating a sequence of solutions.
solution has an associated time which, unlike the digital time, is not constrai
to a particular minimum granularity.

• The analog simulator cannot tell for certain the time at which the next solut
will converge. Thus, it can tell the time of the most recently calculated solu
but not the time of the next solution.

• In general the analog solution is a function of one or more previous solution
Having calculated the solution for a given time the analog simulator can eit
accept or reject that solution. It cannot calculate a solution for a future time u
it has accepted the solution for the current time.

3. Analog to Digital events

• Analog to digital events are generated by conversion elements (which are an
digital behavioral models) when evaluated by the analog simulator.

• Analog events (e.g. cross, initial_step, final_step) cause an analog solution o
time at which they occur.

• Thus, any analog to digital event is generated as the result of a particular tran
solution. This means that until the events are passed to the digital simulator
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can stay associated with the solution which produced them, and be rejected a
with the solution if it is rejected.

4. Digital to Analog events

• Digital to Analog events will cause an analog solution of the time in which th
occur.
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Annex B

Open Issues

This annex contains the list of all open issues known to the working group at this 

• initial conditions for ddt operators

• real valued ports (Section 8.3.3) need more/better explanation

• idtmod function should only be used after careful analysis and understandin
its behavior.

• Connecting wires of different natures (analog-analog connection)

• Semantics of discipline resolutions

• Connect statement and matching different discipline connections

• Syntax and Semantics for backannotation (hierarchical references, SDF)

• Need for locally scoped parameters and variables

• VCD format for postprocessing tools
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Annex C

Analog Language Subset

Prior to the release of Verilog-AMS the OVI board approved an analog only
specification called Verilog-A v1.0. With the release of Verilog-AMS, the "official"
Verilog–A LRM is no longer supported as it is included as part of the Verilog-AMS
specification. The purpose of this Annex is to help developers define a working su
of Verilog-AMS HDL for analog only products.

C.1 Verilog-AMS Overview

The overview in Section 1 is applicable to both Verilog-AMS and Verilog-A with th
following two additions:

1. Verilog-A overview: This Verilog-A Hardware Description Language (HDL)
language annex defines a behavioral language for analog systems. Verilog
HDL is derived from the IEEE 1364-1995 Verilog HDL specification and is 
subset of the Verilog-AMS language specification. This annex is intended t
cover the definition of Verilog-A HDL as proposed by Open Verilog
International (OVI).

2. Verilog-A language features: The Verilog-A is a subset of Verilog-AMS
containing only the analog semantics required for compatibility. Below is a 
of salient features  of the resulting language:

Build this list!

C.2 Lexical Tokens

With the exception of certain keywords required for Verilog-AMS the chapter 2 is
applicable to both Verilog-A and Verilog-AMS. All Verilog-AMS keywords must be
supported by Verilog-A as reserved words, but Verilog-D and Verilog-AMS specifi
keywords are not used. The following Verilog-AMS keywords are not required to b
supported for a fully compliant Verilog-A subset:

1. From section 2.6.2.1, Verilog-AMS Keywords: The following are the keywor
not used by Verilog-A HDL.
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2. From section 2.6.2.4, Built-in driver access functions: The following are reser
keywords for all built-in driver access functions and are not used by Verilog-

driver_active driver_local driver_state
driver_count driver_next_state driver_strength
driver_delay driver_next_strength

C.3 Data Types

The data types of Chapter 3 are applicable to both Verilog-AMS and Verilog-A with
following two exceptions.

1. From section 3.4.2.2, Domain Binding: The domain binding type of discrete s
be an error in Verilog-A

2. From section 3.5, Default Discipline: The default_discipline_directive compi
directive is not supported in Verilog-A. All Verilog-A modules must have a
discipline defined within the module.

Note: This feature is provided to allow the use of digital modules in Verilog-AMS without editing th
to add a discipline.

C.4 Expressions

The expressions defined in Chapter 4 are applicable to Verilog-AMS and Verilog-

C.5 Signals

The signals defined in Chapter 5 are applicable to Verilog-AMS and Verilog-A

C.6 Analog Behavior

The analog behavior defined in Chapter 6 are applicable to Verilog-AMS and Verilo

C.7 Mixed Signal

The Mixed-Signal section only applies to Verilog-AMS!!!!!!!!!!!!!!!!!!!!!.
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C.8 Hierarchical Structure

The hierarchical structure defined in Chapter 8 is applicable to Verilog-AMS and
Verilog-A, except support for real value ports is only applicable to Verilog-AMS an
Verilog-D (see from section 8.3.3, Real valued ports).

C.9 Scheduling Sematics

The analog simulation cycle is applicable to both Verilog-AMS and Verilog-A. The
mixed signal simulation cycle from section A.2 is only applicable to Verilog-AMS.

C.10 Open Issues

Issues in annex B as they are addressed need to also be reviewed for their impact o
section.

C.11 Syntax

This annex, defines the differences between Verilog-AMS and Verilog-A. Annex D
defines the BNF for Verilog-AMS.

C.12 Keywords

The keywords in this annex are the complete set of Verilog-AMS keywords includ
those from Verilog-D. Please refer to the above section on lexical tokens to define
list of Verilog-A keywords.

Note: All keywords of Verilog-AMS are reserved words for even Verilog-A.

C.13 System Tasks and Functions

The system tasks and functions in annex F are applicable to both Verilog-AMS an
Verilog-A.

C.14 Compiler Directives

The compiler directives of annex G are applicable to both Verilog-AMS and Verilog
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C.15 Standard Definitions

The definitions of annex H are applicable to both Verilog-AMS and Verilog-A.

C.16 SPICE Compatability

Annex I defines the SPICE compatilibity for Verilog-A and Verilog-AMS..

C.17 Changes from Verilog-A LRM v1.0

As part of the Verilog-AMS development some changes have occured to the curre
Veriog-A. Most of these changes resulted in additional capabiliity; but some new
compability issues now exist. This section highlights these differences.

C.17.1 New functions

• ceil

• floor

• idtmod
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C.17.2 Changes

C.18 Obsolete Functionality

The following statements are not supported in the current version of Verilog-AMS; t
are only noted for backward compability.

C.18.1 Forever statement

This statement is no longer supported.

C.18.2 NULL statement

This statement is no longer supported.

C.18.3 Generate statement

Thegenerate statement is a looping construct that is unrolled at elaboration time. Th
generate statement can be used only in the analog block.

The syntax of generate statement is as follows:

Expression v1.0 Syntax v1.4 Syntax
port branch I<a> I(<a>)
discontinuity discontinuity(x) discontinuity()
limexp $limexp(expression) limexp(expression)
user-defined function function analog function
bound_step bound_step(const_expression) bound_step(expression)
domains n/a domain continuous
modulus operator integers only now supports integer and reals

k scalar (103) n/a now supported

genevar n/a genevarlist_of genvar_identifiers
initial_step default = TRAN default = ALL
final_step default = TRAN default = ALL
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Figure C-1: Syntax for generate statement

The index must not be assigned or modified inside the loop.

Thestart_expr, end_expr, andincr_expr are genvar expressions - expressions containing
constants and variables declared asgenvar. Thegenvar_identifier cannot be assigned to
within the generate statement.

If the start_expr is less than theend_expr and theincr_expr is negative, or if thestart_expr is
greater than theend_exprand theincr_expris positive, then the generate statement does n
execute.

If the start_expr equals theend_expr, theincr_expr is ignored and the statement is execute
once. If theincr_expris not given, it defaults to +1 if thestart_expris less than theend_expr,
and -1 if thestart_expr is greater than theend_expr.

The statement, which can be a sequential block, is replicated with all occurrences
genvar_identifier in the statement replaced by its value. In the first instance of the
statement, thegenvar_identifier is replaced with thestart_expr value. In the second, it is
replaced by the value of thestart_exprplus theincr_expr. In the third, it is replaced by the
value of thestart_expr plus two times theincr_expr. This pattern is repeated until the
start_exprplus a multiple of theincr_expris greater than theend_expr if incr_expr is positive or

is less than the end_expr if incr_expr is negative.

Example:

This module implements a continuously running (not clocked) analog-to-digital
converter.

module adc(in,out) ;
parameter bits=8, fullscale=1.0, dly=0.0, ttime=10n;
input  in;
output [0:bits-1] out;
electrical in;
electrical [0:bits-1] out;
real sample, thresh;
genvar i;

generate_statement ::=
generategenvar_identifier( start_expr, end_expr [, incr_expr ])

statement

start_expr ::=
genvar_expression

end_expr ::=
genvar_expression

incr_expr ::=
genvar_expression
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analog begin
thresh = fullscale/2.0;
generate i (bits-1,0)begin

V(out[i]) <+ transition(sample > thresh, dly, ttime);
if  (sample > thresh) sample = sample - thresh;
sample = 2.0*sample;

end
end

endmodule
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Syntax

This annex contains the formal syntax definition of Verilog-AMS HDL. The
conventions used are described in Section 1, Overview. Any category whose nam
begins with the italicized worddigital_ should be interpreted by its definition in the
grammer given in ieee 1364 Annex A, and not by the local definition given herein. W
such a category is defined herein (e.g.digital_primary ::= ) then that definition should
be taken to superceed the definition in ieee 1364 when used for Verilog-AMS.

D.1 Source text
source_text ::=

{description}

description ::=
module_declaration

| discipline_definition
| nature_definition
| connect_statement
| digital_udp_declaration

module_declaration ::=
modulemodule_identifier [digital_list_of_ports ];
[ module_items ]
endmodule

module_items ::=
{ module_item }

| analog_block

module_item ::=
module_item_declaration

| parameter_override
| module_instantiation
| digital_continuous_assignment
| digital_gate_instantiation
| digital_udp_instantiation
| digital_specify_block
| digital_initial_construct
| digital_always_construct

module_item_declaration ::=
parameter_declaration

| digital_input_declaration
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| digital_output_declaration
| digital_inout_declaration
| digital_integer_declaration
| digital_real_declaration
| node_declaration
| genvar_declaration
| branch_declaration
| function_declaration
| digital_net_declaration
| digital_reg_declaration
| digital_time_declaration
| digital_realtime_declaration
| digital_event_declaration
| digital_task_declaration

parameter_override ::=
defparam list_of_param_assignments;

D.2 Natures
nature_definition ::=

nature nature_name
[ nature_descriptions ]
endnature

nature_name ::=
nature_identifier

| nature_identifier: parent_identifier

parent_identifier ::=
nature_identifier

| discipline_identifier.flow
| discipline_identifier.potential

nature_descriptions ::=
nature_description { nature_description }

nature_description ::=
attribute= constant_expression;

attribute ::=
abstol

| access
| ddt_nature
| idt_nature
| units
| attribute_identifier
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D.3 Disciplines
discipline_definition ::=

discipline discipline_identifier
[ discipline_descriptions ]
enddiscipline

discipline_descriptions ::=
discipline_description { discipline_description }

discipline_description ::=
nature_binding

| attr_override
| domain_binding

nature_binding ::=
pot_or_flownature_identifier;

attr_override ::=
pot_or_flow. attribute_identifier= constant_expression;

pot_or_flow ::=
potential

| flow

domain_binding ::=
domain discrete

| domain continuous

D.4 Declarations
parameter_declaration ::=

parameter [opt_type] list_of_param_assignments;

opt_type ::=
real

| integer

list_of_param_assignments ::=
declarator_init

| list_of_param_assignments, declarator_init

declarator_init ::=
parameter_identifier= constant_expression [ {opt_value_range} ]

| identifier range= constant_param_arrayinit

opt_value_range ::=
from value_range_specifier

| excludevalue_range_specifier
| excludeconstant_expression
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value_range_specifier ::=
start_range_spec expression1: expression2 end_range_spec

start_range_spec ::=
[

| (

end_range_spec ::=
]

| )

expression1 ::=
constant_expression

| -inf

expression2 ::=
constant_expression

| inf

constant_param_arrayinit ::=
{ param_arrayinit_element_list}

param_arrayinit_element_list
param_arrayinit_element {, param_arrayinit_element }

param_arrayinit_element ::=
| constant_expression [ = value_range_specifier ]
| constant_expression{ constant_expression [ =

value_range_specifier ]}

node_declaration ::=
discipline_identifier [range] list_of_nodes;

list_of_nodes ::=
node_identifier

| hierarchical_node_identifier
| node_identifier, list_of_nodes

branch_declaration ::=
branch list_of_branches;

list_of_branches ::=
terminals list_of_branch_identifiers

terminals ::=
( node_or_port_scalar_expression)

| ( node_or_port_scalar_expression, node_or_port_scalar_expression)

list_of_branch_identifiers ::=
branch_identifier [ range ]

| branch_identifier [ range ], list_of_branch_identifiers

genvar_declaration ::=
genvar list_of_genvar_identifiers;

list_of_genvar_identifiers ::=
genvar_identifier { , genvar_identifier }
Version 1.4 Verilog-AMS Language Reference Manual D-4



Syntax
function_declaration ::=
analog function [ type ] function_identifier ;
function_item_declaration { function_item_declaration }
statement
endfunction

| function [ digital_range_or_type ]function_identifier ;
function_item_declaration { function_item_declaration }
digital_statement
endfunction

type ::=
integer

| real

function_item_declaration ::=
input_declaration

| block_item_declaration

block_item_declaration ::=
parameter_declaration

| integer_declaration
| real_declaration

D.5 Module instantiation
module_instantiation ::=

module_identifier [ parameter_value_assignment ] instance_list

instance_list ::=
module_instance {, module_instance } ;

module_instance ::=
name_of_instance ( [ list_of_module_connections ])

name_of_instance ::=
module_instance_identifier [ range ]

list_of_module_connections ::=
ordered_port_connection {, ordered_port_connection }

| named_port_connection {, named_port_connection }

ordered_port_connection ::=
[ node_expression |ground ]

named_port_connection ::=
. port_identifier ( [ node_expression |ground ] )

parameter_value_assignment ::=
# ( ordered_param_override_list)

| # ( named_param_override_list)

ordered_param_override_list ::=
constant_or_constant_array_expression {, constant_or_constant_array_expression }
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named_param_override_list ::=
named_param_override {, named_param_override }

named_param_override ::=
. parameter_identifier( constant_or_constant_array_expression)

constant_or_constant_array_expression ::=
constant_expression

| constant_array_expression

node_expression ::=
node_identifier

| node_identifier[ expression]
| node_identifier[ msb_constant_expression : lsb_constant_expression]
| node_concatenation

node_concatenation ::=
{ node_expression_list}

node_expression_list ::=
node_expression {, node_expression }

D.6 Connect statements

D.7 Behavioral statements
analog_block ::=

analog analog_statement

analog_statement ::=
analog_block_statement

| analog_branch_contribution
| analog_indirect_branch_assignment
| analog_procedural_assignment
| analog_conditional_statement
| analog_for_statement
| analog_case_statement
| analog_event_controlled_statement
| system_task_enable
| statement

statement ::=
block_statement

| procedural_assignment
| conditional_statement
| loop_statement
| case_statement

analog_block_statement ::=
begin [ : block_identifier { block_item_declaration } ]
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{ analog_statement_or_null }
end

analog_statement_or_null ::=
analog_statement ! :

analog_branch_contribution ::=
bvalue<+ analog_expression;

analog_indirect_branch_assignment ::=
bvalue: nexpr== analog_expression;

nexpr ::=
bvalue

| ddt ( bvalue)
| idt ( bvalue)

analog_procedural_assignment ::=
lexpr= analog_expression;

lexpr ::=
integer_identifier

| real_identifier
| array_element

array_element ::=
integer_identifier [ expression]

| real_identifier [ expression]

analog_conditional_statement ::=
if (  genvar_expression) analog_statement_or_null
[ elseanalog_statement_or_null ]

analog_case_statement ::=
case ( analog_expression)
 analog_case_item { analog_case_item }
endcase

analog_case_item ::=
analog_expression {, analog_expression } : analog_statement_or_null

| default [ : ] analog_statement_or_null

analog_for_statement ::=
| for (  genvar_assignment; genvar_expression;

genvar_assignment) analog_statement

event_controlled_statement ::=
@ (event_expression) statement_or_null

event_expression ::=
simple_event [or event_expression ]

simple_event ::=
global_event

| event_function
| identifier
| digital_event_identifier
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| posedgedigital_expression
| negedgedigital_expression

digital_event_expression ::=
digital_expression

| simple_event
| digital_event_expression or digital_event_expression

global_event ::=
initial_step [ ( analysis_list ) ]

| final_step [ ( analysis_list ) ]

analysis_list ::=
analysis_name {, analysis_name }

analysis_name ::=
" analysis_identifier "

event_function ::=
cross_function

| timer_function

cross_function ::=
cross (arg_list)

timer_function ::=
timer ( arg_list)

statement_or_null ::=
statement ! :

system_task_enable ::=
system_task_name [( expression {, expression } ) ] ;

system_task_name ::=
$identifier

Note: The$ may not be followed by a space.

block_statement ::=
begin [ : block_identifier { block_item_declaration } ]
{ statement }
end

procedural_assignment ::=
lexpr= expression;

conditional_statement ::=
if (  expression) statement_or_null
[ elsestatement_or_null ]

acase_statement ::=
case ( expression)
 case_item {case_item}
endcase
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case_item ::=
expression {, expression } : statement_or_null

| default [ : ] statement_or_null

loop_statement ::=
| repeat ( expression) statement
| while ( expression) statement
| for (  procedural_assignment; expression;

procedural_assignment) statement

D.8 Analog Expressions
analog_expression ::=

expression
| analog_operator( arg_list)

analog_operator ::=
ddt | idt  | idtmod | delay | transition  | slew | bound_step

| laplace_zd | laplace_zp | laplace_np | laplace_nd | discontinuity
| zi_zp | zi_zd | zi_np | zi_nd | last_crossing| ac_stim| limexp
| white_noise | flicker_noise | noise_table

genvar_expression ::=
genvar_primary

| unary_operator genvar_primary
| genvar_expression binary_operator genvar_primary
| genvar_expression? genvar_expression: genvar_expresson
| string

genvar_primary ::=
constant_primary

| genvar_identifier
| genvar_identifier [ genvar_expression ]
| analysis ( arg_list)

genvar_assignment ::=
genvar_identifier= genvar_expression

D.9 Expressions
range ::=

[ constant_expression: constant_expression]

constant_expression  ::=
constant_primary

| string
| unary_operator constant_primary
| constant_expression binary_operator constant_expression
| constant_expression? constant_expression: constant_expression
| constant_array_expression
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| attribute_reference
| built_in_function(const_arg_list)

const_arg_list ::=
constant_expression { , constant_expression }

attribute_reference ::=
node_identifier . pot_or_flow . attribute_identifier

constant_primary ::=
number

| parameter_identifier
| constant_concatenation

constant_array_expression ::=
{ constant_arrayinit_element {, constant_arrayinit_element }}

constant_arrayinit_element ::=
| constant_expression
| constant_expression{ constant_expression}

expression ::=
primary

| unary_operator primary
| expression binary_operator expression
| expression? expression: expression
| function_call
| access_function_reference
| built_in_function( arg_list)
| system_function( arg_list)

function_call ::=
function_identifier ( arg_list )

arg_list ::=
argument {, argument}

argument ::=
expression

| constant_array_expression

constant_array_expression ::=
{ constant_array_init_elemnet_list }

constant_array_init_elemnet_list ::=
NULL

| constant_array_init_element {, constant_array_init_element }

constant_array_init_element ::=
constant_expression

| constant_expression {, constant_expression }
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access_function_reference ::=
bvalue

| pvalue
bvalue ::=

access_identifier( analog_signal_list)
analog_signal_list ::=

branch_identifier
| array_branch_identifier [ genvar_expression ]
| node_or_port_scalar_expression
| node_or_port_scalar_identifier ,node_or_port_scalar_identifier

node_or_port_scalar_expression ::=
node_or_port_identifier

| array_node_or_port_identifier [ genvar_expression ]
| buss_node_or_port_identifier [ genvar_expression ]

pvalue ::=
flow_access_identifier( < port_scalar_expression> )

port_scalar_expression ::=
port_identifier

| array_port_identifier [ genvar_expression ]
| buss_port_identifier [ genvar_expression ]

unary_operator ::=
+ |  - |  ! |  ~

binary_operator ::=
+ |  - | * | / | % | == | != | && |  ||

| < |  <= |  > |  >= | & |  | | ^ |  ^~ |  ~^ |  >> |   <<

digital_primary ::=
primary

primary ::=
number

| identifier
| identifier[ expression]
| identifier[ digital_msb_constant_expression:digital_lsb_constant_expression]
| digital_concatenation
| digital_multiple_concatenation
| digital_function_call
| ( digital_mintypmax_expression)
| string
| nexpr
| ( expression)

number ::=
decimal_number

| real_number

decimal_number ::=
[ sign ] unsigned_num

real_number ::=
[ sign ] unsigned_num. unsigned_num

| [ sign ] unsigned_num [. unsigned_num ]e [ sign ] unsigned_num
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| [ sign ] unsigned_num [. unsigned_num ]E [ sign ] unsigned_num
| [ sign ] unsigned_num [. unsigned_num ] scale_factor

concatenation ::=
{ expression { , expression }}

sign ::=
+

| -

unsigned_num ::=
decimal_digit { _ | decimal_digit }

decimal_digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

scale_factor ::=
T | G | M  | K  | k | m | u | n | p | f | a

built_in_function ::=
ln | log | exp  | sqrt | min  | max | abs  | pow | ceil | floor

| sin | cos | tan  | asin | acos | atan | atan2
| sinh | cosh | tanh | asinh | acosh | atanh | hypot

driver_access_function ::=
driver_count | driver_active | driver_local | driver_state |
driver_strength | driver_delay | driver_next_state |
driver_next_strength

system_function ::=
$limexp | $realtime | $temperature | $vt

D.10 General
comment ::=

short_comment
| long_comment

short_comment ::=
// comment_text\n

long_comment ::=
/*  comment_text*/

comment_text ::=
{ Any_ASCII_character  }

string ::=
"  { Any_ASCII_character_except_newline }"

identifier  ::=
IDENTIFIER [ {  . IDENTIFIER } ]

NOTE: The period in identifier may not be preceded or followed by a space.
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IDENTIFIER ::=
simple_identifier

| escaped_identifier

simple_identifier ::=
[a-zA-Z_]{a-zA-Z_$0-9}

escaped_identifier ::=
\ { Any_ASCII_character_except_white_space } white_space

white_space ::=
space

| tab
| newline
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Annex E

Keywords

This annex contains the list of all keywords used in Verilog-AMS HDL.
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abs
abstol
access
acos
acosh
ac_stim
always
analog
analysis
and
asin
asinh
assign
atan
atan2
atanh
begin
bound_step
branch
buf
bufif0
bufif1
case
casex
casez
cmos
connect
cos
cosh
cross
ddt
ddt_nature
deassign
default
defparam
delay
disable
discipline
discontinuity
edge
else
end
enddiscipline
endcase

endmodule
endfunction
endnature
endprimitive
endspecify
endtable
endtask
event
exclude
exp
final_step
flicker_noise
flow
for
force
forever
fork
from
function
generate
genvar
ground
highz0
highz1
hypot
idt
idt_nature
if
ifnone
inf
initial
initial_step
inout
input
integer
join
laplace_nd
laplace_np
laplace_zd
laplace_zp
large
last_crossing
ln
log

macromodule
max
medium
min
module
nand
nature
negedge
nmos
noise_table
nor
not
notif0
notif1
or
output
parameter
pmos
posedge
potential
pow
primitive
pull0
pull1
pullup
pulldown
rcmos
real
realtime
reg
release
repeat
rnmos
rpmos
rtran
rtranif0
rtranif1
scalared
sin
sinh
slew
small
specify
specparam

sqrt
strong0
strong1
supply0
supply1
table
tan
tanh
task
temperature
time
timer
to
tran
tranif0
tranif1
transition
tri
tri0
tri1
triand
trior
trireg
units
vectored
vt
wait
wand
weak0
weak1
while
white_noise
wire
with
wor
xnor
xor
using
zi_nd
zi_np
zi_zd
zi_zp
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Annex F

System Tasks and Functions

This annex describes system tasks and functions available in Verilog-AMS HDL.

F.1 Environment parameter functions

These functions return information about the current environment parameters as a
number.$realtime and$temperature do not take any input arguments;$vt can optionally
have temperature (in Kelvin units) as an input argument.

F.2 $random function

Syntax:

$random [ ( seed ) ] ;

The system function$random provides a mechanism for generating random numbe
The function returns a new 32-bit random number each time it is called. The rand
number is a signed integer; it can be positive or negative.

The seed parameter controls the numbers that$random returns. The seed parameter
must be either a register, an integer, or a time variable. The seed value should be as
to this variable prior to calling$random.

Examples:

1. Where b > 0 the expression ($random % b) gives a number in the following range:
[(-b+1): (b-1)]. The following code fragment shows an example of random number
generation between -59 and 59:

integer rand;
rand =$random % 60;

Function Returns

$realtime Current simulation time in seconds.

$temperature Ambient temperature in kelvin.

$vt Thermal voltage ( ).

$vt(temp) Thermal voltage at given temperature.

kT q⁄
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2. The following example shows how adding the concatenation operator to the prece
example gives rand a positive value from 0 to 59.

integer rand;
rand = {$random} % 60;

F.3 $dist_ functions

Syntax:

Figure F-1: Syntax for the probabilistic distribution functions

All parameters to the system functions are real values, except forseed (which is an
integer). For the exponential, poisson, chi-square, t, and erlang functions, the param
mean, degree of freedom, and k_stage must be greater than 0.

Each of these functions returns a pseudo-random number whose characteristics a
described by the function name. That is,$dist_uniform returns random numbers
uniformly distributed in the interval specified by its parameters.

For each system function, the seed parameter is an in-out parameter; that is, a va
passed to the function and a different value is returned. The system functions will alw
return the same value given the same seed. This facilitates debugging by making
operation of the system repeatable. The argument for the seed parameter should
integer variable that is initialized by the user and only updated by the system func
This will ensure that the desired distribution is achieved.

All functions return a real value.

In the$dist_uniform function, the start and end parameters are real inputs which bo
the values returned. The start value should be smaller than the end value.

The mean parameter, used by$dist_normal, $dist_exponential, $dist_poisson, and
$dist_erlang, is an real input which causes the average value returned by the functio
approach the value specified.

The standard deviation parameter used with the$dist_normal function is an real input
which helps determine the shape of the density function. Larger numbers for stan

$dist_uniform (seed, start, end) ;
$dist_normal (seed, mean, standard_deviation) ;
$dist_exponential(seed, mean) ;
$dist_poisson (seed, mean) ;
$dist_chi_square(seed, degree_of_freedom) ;
$dist_t (seed, degree_of_freedom) ;
$dist_erlang(seed, k_stage, mean) ;
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deviation will spread the returned values over a wider range. With a mean of 0 an
standard deviation of 1,$dist_normal generates gaussian distribution.

The degree of freedom parameter used with the$dist_chi_squareand$dist_t functions
is an real input which helps determine the shape of the density function. Larger num
will spread the returned values over a wider range.

F.4 Simulation control system tasks

There are two simulation control system tasks,$finish and$stop.

F.4.1 $finish

Syntax:

$finish [(n)] ;

The$finish system task simply makes the simulator exit and pass control back to the
operating system. If an expression is supplied to this task, then its value determine
diagnostic messages that are printed before the prompt is issued. If no argument 
supplied, then a value of 1 is taken as the default.

F.4.2 $stop

Syntax:

$stop [(n)] ;

The$stop system task causes simulation to be suspended. This task takes an opt
expression argument (0, 1, or 2) that determines what type of diagnostic message
printed. The amount of diagnostic messages output increases with the value of th
optional argument passed to$stop.

Parameter Value Diagnostic Message

0 prints nothing

1 prints simulation time and location

2 prints simulation time, location, and statistics about the memory
and CPU time used in simulation
Version 1.4 Verilog-AMS Language Reference Manual F-3
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F.5 File operation tasks

F.5.1 $fopen

Syntax:

integer  multi_channel_descriptor =$fopen ( " file_name" ) ;

The function$fopen opens the file specified as an argument and returns a 32-bit
unsigned multichannel descriptor that is uniquely associated with the file. It returns
the file could not be opened for writing.

The multichannel descriptor should be thought of as a set of 32 flags, where each
represents a single output channel. The least significant bit (bit 0) of a multichann
descriptor always refers to the standard output. The standard output is also called ch
0. The other bits refer to channels that have been opened by the$fopensystem function.

The first call to$fopen opens channel 1 and returns a multichannel descriptor value
2—that is, bit 1 of the descriptor is set. A second call to$fopen opens channel 2 and
returns a value of 4—that is, only bit 2 of the descriptor is set. Subsequent calls to $f
open channels 3, 4, 5, and so on and return values of 8, 16, 32, and so on, up to 
maximum of 32 open channels. Thus, a channel number corresponds to an individu
in a multichannel descriptor.

F.5.2 $fclose

Syntax:

file_close_task ::=
$fclose ( multi_channel_descriptor) ;

The$fclosesystem task closes the channels specified in the multichannel descriptor
does not allow any further output to the closed channels. The$fopen task will reuse
channels that have been closed.

F.6 Displaying results

The system task$strobeprovides the ability to display simulation data when the simulat
has converged on a solution for all nodes.

The$strobe taskdisplays its arguments in the same order they appear in the argu
list. Each argument can be a quoted string, an expression that returns a value, or
argument.

The contents of string arguments are output literally except when certain escape
sequences are inserted to display special characters or specify the display format
subsequent expression.

Escape sequences are inserted into a string in three ways:
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— The special character \ indicates that the character to follow is a literal or n
printable character (see Table F-1:).

— The special character % indicates that the next character should be interpre
a format specification that establishes the display format for a subseq
expression argument (Table F-2:). For each % character that appears in a s
a corresponding expression argument must be supplied after the string.

— The special character string %% indicates the display of the percent sign ch
ter % (see Table F-1:).

Any null argument produces a single space character in the display. (A null argume
characterized by two adjacent commas in the argument list.)

The$strobe task, when invoked without arguments, simply prints a newline charac

F.6.1 Escape sequences for special characters

The following escape sequences, when included in a string argument, cause spec
characters to be displayed:

F.6.2 Format specifications

Table F-2: shows the escape sequences used for format specifications. Each esc
sequence, when included in a string argument, specifies the display format for a
subsequent expression. For each % character (except %m) that appears in a strin
corresponding expression must follow the string in the argument list. The value of
expression replaces the format specification when the string is displayed.

Table F-1: :   Escape sequences for printing special characters

\n is the newline character

\t is the tab character

\\ is the \ character

\" is the " character

\ddd is a character specified by 1 to 3 octal digits

%% is the % character

Table F-2: :   Escape sequences for format specifications

%h or %H display in hexadecimal format

%d or %D display in decimal format

%o or %O display in octal format

%b or %B display in binary format
Version 1.4 Verilog-AMS Language Reference Manual F-5
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Any expression argument that has no corresponding format specification is displa
using the default decimal format in$strobe.

The format specifications in Table F-3: are used with real numbers and have the f
formatting capabilities available in the C language. For example, the format
specification %10.3g specifies a minimum field width of 10 with 3 fractional digits.

F.6.3 Hierarchical name format

The %m format specifier does not accept an argument. Instead, it causes the displa
to print the hierarchical name of the module, task, function, or named block that invo
the system task containing the format specifier. This is useful when there are man
instances of the module that calls the system task. One obvious application is tim
check messages in a flip-flop or latch module; the %m format specifier will pinpoint
module instance responsible for generating the timing check message.

F.6.4 String format

The %s format specifier is used to print ASCII codes as characters. For each %s
specification that appears in a string, a corresponding parameter must follow the s
in the argument list. The associated argument is interpreted as a sequence of 8-b
hexadecimal ASCII codes, with each 8 bits representing a single character. If the
argument is a variable, its value should be right-justified so that the right-most bit of
value is the least-significant bit of the last character in the string. No termination
character or value is required at the end of a string, and leading zeros are never p

F.7 Others - from Ian’s writeup

Please look at these -- much more is needed.

%c or %C display in ASCII character format

%m or %M display hierarchical name

%s or %S display as a string

Table F-3: : Format specifications for real numbers

%e or %E display ‘real’ in an exponential format

%f or %F display ‘real’ in a decimal format

%g or %G display ‘real’ in exponential or decimal format, which-
ever format results in the shorter printed output

Table F-2: :   Escape sequences for format specifications
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F.7.1 System tasks and functions

The table below is from Section 14 of the P1364 LRM. Following this is a repeat of
material from 4.2.3, "Environment Parameters".

The following symbols in the first column have been used to flag actions that need t
taken:

x  - task/function is already covered in Annex F

+  - P1364 definition should work in analog context also

*  - see notes later in section

!  - proposed extension to P1364

F.7.2 Display tasks

* $display{,b,h,o}

  $monitor{,b,h,o}

  $monitor{on,off}

x $strobe{,b,h,o}

* $write{,b,h,o}

$strobe always emits a newline.  Propose adding $write as similar to $strobe but 
newline, and $display as same as $strobe.  These all read values after convergen
are thus similar in flavor to $strobe (at end of time slot).

F.7.3 File I/O tasks

x $fclose

* $fdisplay{,b,h,o}

  $fmonitor{b,h,o}

x $fopen

* $fstrobe{,b,h,o}

* $fwrite{,b,h,o}

* $readmemb

* $readmemh

! $readmemr

$fopen/$fclose are in Annex F. $fstrobe, etc, are missing. Propose same approach
'display tasks' for $fstrobe, etc.

Propose augmenting the $readmem functions with $readmemr to read real values
(including support for scale factors like "1.5u", etc).
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F.7.4 Timescale tasks

 $printtimescale

 $timeformat

F.7.5 Simulation control tasks

x $finish

x $stop

F.7.6 Timing check tasks

  $hold

  $period

  $setup

  $skew

  $nochange

  $recovery

  $setuphold

  $width

F.7.7 PLA modeling tasks

  $async*

  $sync*

F.7.8 Stochastic analysis tasks

  $q_*

x $random

F.7.9 Simulation time functions

* $realtime

* $time

* $stime

There is a problem here. The P1364 versions return time scaled to the timescale u
the module.  The A/MS LRM 'environment parameter' returns "current simulation 
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F.7.10 Conversion functions for reals

* $bitstotreal

* $itor

* $realtobits

* $rtoi

These should be handled by the mechanism that deals with incompatible discrete
disciplines (whatever that is).

F.7.11 Probabilistic distribution functions

* $dist_chi_square

* $dist_erlang

* $dist_exponential

* $dist_normal

* $dist_poisson

* $dist_t

* $dist_uniform

There are several problems here.  The return type of the P1364 versions is unspe
but is probably intended to be a 32-bit signed integer, as for $random.  The return
of the A/MS versions has been explicity defined to be real.

Some of the arguments to these functions need to be integer and some of them n
be real (in P1364 they are all integers):

  chi_square:     freedom is int

  erlang:         mean is real

  exponential:    mean is real

  normal:         mean, std_dev are real

  poisson:        mean is real

  t:              freedom is real <g>

  uniform:        start, end are integer
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F.7.12 Environment Parameters (from 4.2.3 of A/MS LRM)

* $realtime

* $temperature

* $vt

* $vt(temp)

As noted above, $realtime is defined differently (owing to module scaling) between
two contexts.

Is the intention to import $temperature, etc, into P1364?
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Annex G

Compiler Directives

All Verilog-AMS HDL compiler directives are preceded by the (` ) character. This
character is called accent grave. It is different from the character (’), which is the sin
quote character. The scope of compiler directives extends from the point where it
processed, across all files processed, to the point where another compiler directiv
supersedes it or the processing completes.

This annex describes the following compiler directives:

`default_discipline
`default_transition
`timescale
`define
`else
`endif
`ifdef
`include
`resetall
`undef

G.1 `default_discipline

The directivè default_discipline controls the node type created for implicit node
declarations (see section 3.4.4). It can be used only outside of module definitions
affects all modules that follow the directive, even across source file boundaries. Mul
`default_disciplinedirectives are allowed. The latest occurrence of this directive in t
source controls the type of nodes that will be implicitly declared. The following is t
syntax of the directive:

Figure G-1: Syntax for default nodetype compiler directive

default_discipline_directive ::=
‘default_discipline [discipline_identifier [qualifier] [scope]]

qualifier ::=
integer | real | reg |
wire | tri  | wand | triand   |wor | trior | trireg |
tri0  | tri1  | supply0 | supply1

scope ::= module_identifier
Version 1.4 Verilog-AMS Language Reference Manual G-1



Compiler Directives

he
elay

le

e

lay
until

d in
ere.

alue;

 G-1:
G.2 `timescale

This directive specifies the time unit and time precision of the modules that follow it. T
time unit is the unit of measurement for time values such as the simulation time and d
values.

To use modules with different time units in the same design, the following timesca
constructs are useful:

— The `timescalecompiler directive to specify the unit of measurement for tim
and precision of time in the modules in the design

The`timescalecompiler directive specifies the unit of measurement for time and de
values and the degree of accuracy for delays in all modules that follow this directive
another̀ timescalecompiler directive is read.

The syntax for thètimescale directive is given in Figure G-2:

Figure G-2: Syntax for timescale compiler directive

Thetime_unit argument specifies the unit of measurement for times and delays.

Thetime_precisionargument specifies how delay values are rounded before being use
simulation. The values used are accurate to within the unit of time that is specified h
The smallesttime_precision argument of all thètimescale compiler directives in the
design determines the time unit of the simulation.

Thetime_precisionargument shall be at least as precise as thetime_unitargument; it cannot
specify a longer unit of time thantime_unit.

The integers in these arguments specify an order of magnitude for the size of the v
the valid integers are 1, 10, and 100. The character strings represent units of
measurement; the valid character strings ares, ms, us, ns, ps, andfs.

The units of measurement specified by these character strings are given in Table

Table G-1: Arguments of time_precision

Character
string

Unit of
measurement

s seconds

ms milliseconds

us microseconds

timescale_compiler_directive ::=
`timescale time_unit/ time_precision
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The following example shows how this directive is used:

`timescale 1 ns / 1ps

Here, all time values in the modules that follow the directive are multiples of 1 ns
because thetime_unitargument is “1 ns”. Delays are rounded to real numbers with thr
decimal places—or precise to within one thousandth of a nanosecond—because 
time_precision argument is “1 ps,” or one thousandth of a nanosecond.

Consider the following example:

`timescale 10us / 100ns

The time values in the modules that follow this directive are multiples of 10 s bec
thetime_unitargument is “10 us”. Delays are rounded to within one tenth of a
microsecond because thetime_precisionargument is “100 ns,” or one tenth of a
microsecond.

G.3 `default_transition

The transition time directive specifies the default value for rise and fall time for
transition filter (section 4.4.8). There are no scope restrictions for this directive. Th
syntax for this directive is shown below in Figure G-3:

Figure G-3: Syntax for default transition compiler directive

Thetransition_time is an integer value. For all transition filters that follow this directive
and do not have rise time and fall time arguments specified,transition_timeis used as the
default rise and fall time value. If another transition time directive is encountered in
subsequent source description, the transition filters following the newly encounter
directive derive their default rise and fall time from the transition time value of the new
encountered directive. In other words, the default rise and fall times for a transition f

ns nanoseconds

ps picoseconds

fs femtoseconds

Table G-1: Arguments of time_precision,continued

Character
string

Unit of
measurement

default_transition_compiler_directive ::=
`default_transition transition_time
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are derived from thetransition_time value of the directive that immediately precedes th
transition filter.

If transition time directive is not used in the description, thetransition_timedefaults to the
smallest time precision specified by the timescale directive.

G.4 `define and `undef

A text macro substitution facility has been provided so that meaningful names can
used to represent commonly used pieces of text. For example, in the situation wh
constant number is repetitively used throughout a description, a text macro would
useful in that only one place in the source description would need to be altered if 
value of the constant needed to be changed.

G.4.1 `define

The directivè define creates a macro for text substitution. This directive can be use
both inside and outside module definitions. After a text macro is defined, it can be u
in the source description by using the (`) character, followed by the macro name. 
compiler substitutes the text of the macro for the string `macro_name. All compile
directives are considered pre-defined macro names; it is illegal to re-define a com
directive as a macro name.

A text macro can be defined with arguments. This allows the macro to be customize
each use individually.

The syntax for text macro definitions is as follows:

Figure G-4: Syntax for text macro definition

The macro text can be any arbitrary text specified on the same line as the text ma
name. If more than one line is necessary to specify the text, the newline must be prec
by a backslash (\). The first newline not preceded by a backslash will end the macro
The newline preceded by a backslash is replaced in the expanded macro with a ne
(but without the preceding backslash character).

text_macro_definition ::=
`define text_macro_name macro_text

text_macro_name ::=
text_macro_identifier [ ( list_of_formal_arguments) ]

list_of_formal_arguments ::=
formal_argument_identifier { , formal_argument_identifier }
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When formal arguments are used to define a text macro, the scope of the formal
arguments extend up to the end of the macro text. A formal argument can be used
macro text in the same manner as an identifier.

If a one-line comment (that is, a comment specified with the characters //) is include
the text, then the comment does not become part of the text substituted. The macr
can be blank, in which case the text macro is defined to be empty and no text is
substituted when the macro is used.

The syntax for using a text macro is as follows:

Figure G-5: Syntax for text macro usage

For an argument-less macro, the text is substituted “as is” for every occurrence of
`text_macro. However, a text macro with one or more arguments must be expand
substituting each formal argument with the expression used as the actual argument
macro usage.

Once a text macro name has been defined, it can be used anywhere in a source
description; that is, there are no scope restrictions. Text macros may be defined and
interactively.

The text specified for macro text can not be split across the following lexical token

— comments
— numbers
— strings
— identifiers
— keywords
— operators

Examples:

`define M_PI 3.14159265358979323846

text_macro_usage ::=
`text_macro_identifier [ ( list_of_actual_arguments) ]

list_of_actual_arguments ::=
actual_argument {, actual_argument }

actual_argument ::=
expression
Version 1.4 Verilog-AMS Language Reference Manual G-5



Compiler Directives

by

ne

s of

then
d

:

`define  size 8
electrical [1:` size] vout;

//define an adc with variable delay
`definevar_adc(dly) adc #(dly)

`var_adc(2) g121 (q21, n10, n11);
`var_adc(5) g122 (q22, n10, n11);

The following is illegal syntax because it is split across a string:

`define first_half "start of string
$display(`first_half end of string");

Note: Text macro names can not be the same as compiler directive keywords.

Note: Text macro names can re-use names being used as ordinary identifiers. For example,
signal_name and`signal_name are different.

Note: Redefinition of text macros is allowed; the latest definition of a particular text macro read
the compiler prevails when the macro name is encountered in the source text.

G.4.2 `undef

The directivè undef undefines a previously defined text macro. An attempt to undefi
a text macro that was not previously defined using a`definecompiler directive can result
in a warning. The syntax for`undef compiler directive is as follows:

Figure G-6: Syntax for undef compiler directive

An undefined text macro has no value.

G.5 `ifdef, `else, `endif

These conditional compilation compiler directives are used to optionally include line
a Verilog-AMS HDL source description during compilation. The`ifdef compiler
directive checks for the definition of a variable name. If the variable name is defined
the lines following thèifdef directive are included. If the variable name is not define
and aǹ else directive exists then this source is compiled.

These directives may appear anywhere in the source description.

Situations where thèifdef, `else, and`endif compiler directives may be useful include

undefine_compiler_directive ::=
`undef text_macro_name
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— selecting different representations of a module such as behavioral, structur
mixed level

— choosing different timing or structural information
— selecting different stimulus for a given simulation run

The`ifdef, `else, and`endif compiler directives have the following syntax:

Figure G-7: Syntax for conditional compilation directives

The text macro name is a Verilog-AMS HDL identifier. The first group of lines and t
second group of lines are parts of a Verilog-AMS HDL source description. The `else
compiler directive and the second group of lines are optional.

The`ifdef, `else, and`endif compiler directives work in the following manner:

— When an`ifdef is encountered, the text macro name is tested to see if i
defined as a text macro name using`define within the Verilog-AMS HDL
source description.

— If the text macro name is defined, the first group_of_lines is compiled as pa
the description. If there is aǹelsecompiler directive, the second group of line
is ignored.

— If the text macro name has not been defined, the first group of lines is ignore
there is aǹelse compiler directive the second group of lines is compiled.

Note: Any group of lines that the compiler ignores still must follow the Verilog-AMS HDL lexica
conventions for white space, comments, numbers, strings, identifiers, keywords, and operat

Note: These compiler directives may be nested.

G.6 `include

The file inclusion (̀include) compiler directive is used to insert the entire contents of
source file in another file during compilation. The result is as though the contents o
included source file appear in place of the`include compiler directive. Thèinclude
compiler directive can be used to include global or commonly used definitions and t
without encapsulating repeated code within module boundaries.

Advantages of using thèinclude compiler directive include the following:

conditional_compilation_directive ::=
`ifdef text_macro_name

first_group_of_lines
[ `else

second_group_of_lines
`endif ]
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— providing an integral part of configuration management
— improving the organization of Verilog-AMS HDL source descriptions
— facilitating the maintenance of Verilog-AMS HDL source descriptions

The syntax for thèinclude compiler directive is as follows:

Figure G-8: Syntax for include compiler directive

The compiler directivèinclude can be specified anywhere within the Verilog-AMS
HDL description. Thefilename is the name of the file to be included in the source fil
Thefilename can be a full or relative path name.

Only white space or a comment may appear on the same line as the`include compiler
directive.

A file included in the source using`include compiler directive may contain other
`include compiler directives. The number of nesting levels for included files are fin

Examples:

Examples of legal comments for the`include compiler directive are as follows:

`include "parts/count.v"

`include "fileA"
`include "fileB" // including fileB

Note: Implementations may limit the maximum number of levels to which include files can be
nested, but the limit shall be at least 15.

G.7 `resetall

When`resetall compiler directive is encountered during compilation, all compiler
directives are set to the default values. This is useful for ensuring that only those
directives that are desired in compiling a particular source file are active.

The recommended usage is to place`resetall at the beginning of each source text file,
followed immediately by the directives desired in the file.

include_compiler_directive ::=
`include " filename"
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Annex H

Standard Definitions

This annex contains the standard definition package for Verilog-AMS HDL

`ifdef DISCIPLINES_H
`else
`define DISCIPLINES_H 1

//
// Natures and Disciplines
//

discipline logic
domain discrete;

enddiscipline

/*
*   Default absolute tolerances may be overriden by setting the
*   appropriate _ABSTOL prior to including this file
*/

// Electrical

// Current in amperes
nature Current

units      = "A";
access     = I;
idt_nature = Charge;

`ifdef CURRENT_ABSTOL
abstol     = `CURRENT_ABSTOL;

`else
abstol     = 1e-12;

`endif
endnature

// Charge in coulombs
nature Charge

units      = "coul";
access     = Q;
ddt_nature = Current;

`ifdef CHARGE_ABSTOL
abstol     = `CHARGE_ABSTOL;

`else
abstol     = 1e-14;

`endif
endnature
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// Potential in volts
nature Voltage

units      = "V";
access     = V;
idt_nature = Flux;

`ifdef VOLTAGE_ABSTOL
abstol     = `VOLTAGE_ABSTOL;

`else
abstol     = 1e-6;

`endif
endnature

// Flux in Webers
nature Flux

units      = "Wb";
access     = Phi;
ddt_nature = Voltage;

`ifdef FLUX_ABSTOL
abstol     = `FLUX_ABSTOL;

`else
abstol     = 1e-9;

`endif
endnature

// Conservative discipline
discipline electrical

potential    Voltage;
flow         Current;

enddiscipline

// Signal flow disciplines
discipline voltage

potential    Voltage;
enddiscipline

discipline current
potential    Current;

enddiscipline

// Magnetic
// Magnetomotive force in Ampere-Turns.
nature Magneto_Motive_Force

units      = "A*turn";
access     = MMF;

`ifdef MAGNETO_MOTIVE_FORCE_ABSTOL
abstol     = `MAGNETO_MOTIVE_FORCE_ABSTOL;

`else
abstol     = 1e-12;

`endif
endnature
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// Conservative discipline
discipline magnetic

potential    Magneto_Motive_Force;
flow         Flux;

enddiscipline

// Thermal

// Temperature in Kelvin
nature Temperature

units      = "K";
access     = Temp;

`ifdef TEMPERATURE_ABSTOL
abstol     = `TEMPERATURE_ABSTOL;

`else
abstol     = 1e-4;

`endif
endnature

// Power in Watts
nature Power

units      = "W";
access     = Pwr;

`ifdef POWER_ABSTOL
abstol     = `POWER_ABSTOL;

`else
abstol     = 1e-9;

`endif
endnature

// Conservative discipline
discipline thermal

potential    Temperature;
flow         Power;

enddiscipline

// Kinematic

// Position in meters
nature Position

units      = "m";
access     = Pos;
ddt_nature = Velocity;

`ifdef POSITION_ABSTOL
abstol     = `POSITION_ABSTOL;

`else
abstol     = 1e-6;

`endif
endnature
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// Velocity in meters per second
nature Velocity

units      = "m/s";
access     = Vel;
ddt_nature = Acceleration;
idt_nature = Position;

`ifdef VELOCITY_ABSTOL
abstol     = `VELOCITY_ABSTOL;

`else
abstol     = 1e-6;

‘endif
endnature

// Acceleration in meters per second squared
nature Acceleration

units      = "m/s^2";
access     = Acc;
ddt_nature = Impulse;
idt_nature = Velocity;

`ifdef ACCELERATION_ABSTOL
abstol     = `ACCELERATION_ABSTOL;

`else
abstol     = 1e-6;

‘endif
endnature

// Impulse in meters per second cubed
nature Impulse

units      = "m/s^3";
access     = Imp;
idt_nature = Acceleration;

`ifdef IMPULSE_ABSTOL
abstol     = `IMPULSE_ABSTOL;

`else
abstol     = 1e-6;

`endif
endnature

// Force in Newtons
nature Force

units      = "N";
access     = F;

`ifdef FORCE_ABSTOL
abstol     = `FORCE_ABSTOL;

`else
abstol     = 1e-6;

‘endif
endnature

// Conservative disciplines
discipline kinematic

potential    Position;
flow         Force;

enddiscipline
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discipline kinematic_v
potential    Velocity;
flow         Force;

enddiscipline

// Rotational

// Angle in radians
nature angle

units      = "rads";
access     = Theta;
ddt_nature = Angular_Velocity;

`ifdef ANGLE_ABSTOL
abstol     = `ANGLE_ABSTOL;

`else
abstol     = 1e-6;

`endif
endnature

// Angular Velocity in radians per second
nature Angular_Velocity

units      = "rads/s";
access     = Omega;
ddt_nature = Angular_Acceleration;
idt_nature = Angular_Velocity;

`ifdef ANGULAR_VELOCITY_ABSTOL
abstol     = `ANGULAR_VELOCITY_ABSTOL;

`else
abstol     = 1e-6;

`endif
endnature

// Angular acceleration in radians per second squared
nature Angular_Acceleration

units      = "rads/s^2";
access     = Alpha;
ddt_nature = Angular_Velocity;

`ifdef ANGULAR_ACCELERATION_ABSTOL
abstol     = `ANGULAR_ACCELERATION_ABSTOL;

`else
abstol     = 1e-6;

`endif
endnature

// Torque in Newtons
nature Angular_Force

units      = "N*m";
access     = Tau;

`ifdef ANGULAR_FORCE_ABSTOL
abstol     = `ANGULAR_FORCE_ABSTOL;

`else
abstol     = 1e-6;

`endif
endnature
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// Conservative disciplines
discipline rotational

potential    Angle;
flow         Angular_Force;

enddiscipline

discipline rotational_omega
potential    Angular_Velocity;
flow         Angular_Force;

enddiscipline

‘endif
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// Mathematical and physical constants

`ifdef CONSTANTS_H
`else
`define CONSTANTS_H 1

// M_ is a mathmatical constant

`define M_E 2.7182818284590452354
`define M_LOG2E 1.4426950408889634074
`define M_LOG10E 0.43429448190325182765
`define M_LN2 0.69314718055994530942
`define M_LN10 2.30258509299404568402
`define M_PI 3.14159265358979323846
`define M_TWO_PI 6.28318530717958647652
`define M_PI_2 1.57079632679489661923
`define M_PI_4 0.78539816339744830962
`define M_1_PI 0.31830988618379067154
`define M_2_PI 0.63661977236758134308
`define M_2_SQRTPI 1.12837916709551257390
`define M_SQRT2 1.41421356237309504880
`define M_SQRT1_2 0.70710678118654752440

// P_ is a physical constant

// charge of electron in coulombs
`define P_Q 1.6021918e-19

// speed of light in vacuum in meters/sec
`define P_C 2.997924562e8

// Boltzman's constant in joules/kelvin
`define P_K 1.3806226e-23

// Plank's constant in joules*sec
`define P_H 6.6260755e-34

// permittivity of vacuum in farads/meter
`define P_EPS0 8.85418792394420013968e-12

// permeability of vacuum in henrys/meter
`define P_U0 (4.0e-7 * `M_PI)

// zero celsius in kelvin
`define P_CELSIUS0 273.15

‘endif
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Annex I

SPICE Compatibility

I.1 Introduction

Analog simulation has long been performed with SPICE and SPICE-like simulators. As
such, there is a huge legacy of SPICE netlists. In addition, SPICE provides a rich set of
predefined models and it is considered neither practical nor desirable to convert th
models in to a Verilog behavioral description. In order for Verilog to be embraced by
analog design community, it is important that Verilog provide an appropriate degre
SPICE compatibility. This annex describes the degree of compatibility that Verilog
provides and the approach taken to provide that compatibility.

I.1.1 Scope of Compatibility

SPICEis not a single language, but rather is a family of related languages. The first wi
used version of SPICE was SPICE2g6 from the University of California at Berkeley.
However, SPICE has been enhanced and distributed by many different companies, 
of which has added their own extensions to the language and the models. As a re
there is a great deal of incompatibility even among the SPICE languages themselves.

Verilog makes no judgement as to which one of the various SPICE languages should be
supported. Instead, it states that if a simulator that supports Verilog is also able to
SPICE netlists of a particular flavor, then certain objects defined in that flavor of SPICE

netlist can be referenced from within a Verilog structural description. In particular, SPICE

models and subcircuits can be instantiated within a Verilog module. This would als
true for any SPICE primitives that are built into the simulator.

I.1.2 Degree of Incompatibility

There are four primary areas of incompatibility between versions of SPICE simulators.

First the version of the SPICElanguage accepted by various simulators is different and
some degree proprietary. This issues is not addressed by Verilog. So whether a par
Verilog-AMS simulator is SPICEcompatible, and with which particular variant of SPICE

it is compatible with, is solely determined by the authors of the simulator.

The second area of incompatibility is that not all SPICE simulators support the same se
of component primitives. Thus, a particular SPICEnetlist may reference a primitive that
is unsupported. Verilog offers no alternative in this case other than the possibility th
the model equations are known, the primitive may be rewritten as a module.
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The third area of incompatibility is that the names of the built-in SPICEprimitives, their
parameters, or their ports might differ from simulator to simulator. This is particula
true because many primitives, parameters, and ports are unnamed in SPICE. When
instantiating SPICEprimitives in Verilog, the primitives must, and parameters and po
can, be named. Since there are no established standard names, there is a high like
of incompatibility cropping up in these names. To reduce this, a list is given as to 
names must be used for the more common components in the next section. Howe
is not possible to anticipate all SPICE primitives and parameters that will be supported
and so different implementations may end up using different names. However, this
of incompatibility can be overcome by using wrapper modules to map names.

The final area of incompatibility is in the mathematical description of the built-in
primitives. As with the netlist syntax, through the years incompatible enhancemen
the models creep in. Again, Verilog offers no solution in this case other than the
possibility that if the model equations are known, the primitive may be rewritten as
module.

I.2 Accessing SPICE Objects from Verilog

If an implementation of a Verilog tool supports SPICEcompatibility, then it is expected
to provide the basic set of SPICE primitives (as listed in the “Preferred Primitive,
Parameter, and Port Names” section on page -4). It is also expected that it will be ab
read SPICE netlists that contain models and subcircuit statements.

SPICE primitives that are built-in to the simulator are treated in the same manner a
Verilog built-in primitives. However, while the Verilog build-in primitives are
standardized, the SPICE primitives are not. All aspects of SPICE primitives are
implementation dependent.

In addition to SPICE primitives, it is also possible to access subcircuits and models
defined within SPICE netlists. The subcircuits and models contained within the SPICE

netlist are treated as module definitions.

I.2.1 Case Sensitivity

SPICEnetlists are case insensitive where as Verilog descriptions are case sensitive.
within Verilog, a mixed case name will first match the same name with identical cas
it were defined in a Verilog description. However, if no exact match is found, then
mixed case name will match the same name defined within SPICEregardless of the case

I.2.2 Examples

I.2.2.1 Accessing S PICE Models

Consider the following SPICE model file being read by a Verilog-AMS simulator.
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.MODEL VERTNPN NPN BF=80 IS=1E-18 RB=100 VAF=50
+ CJE=3PF CJC=2PF CJS=2PF TF=0.3NS TR=6NS

This model could be instantiated in a Verilog module as shown below.

module  diffPair (c1, b1, e, b2, c2);
electrical c1, b1, e, b2, c2;

vertNPN Q1 (c1, b1, e, );
vertNPN Q2 (.c(c2), .b(b2), .e(e));

endmodule

Unlike with SPICE, the first letter of the instance name, in this caseQ1 andQ2, is not
constrained by the primitive type. For example, they can just as easily beT1 andT2.

The ports and params of the BJT are determined by the BJT primitive itself and n
the model statement for the BJT. More on this in the next major section. The BJT h
mandatory ports (collector, base, and emitter) and one optional port (the substrate
the instantiation ofQ1 the ports are passed by order. WithQ2, the ports are passed by
name. In both cases, the optional substrate port is defaulted by simply not giving 

I.2.2.2 Accessing S PICE Subcircuits

As an example of how a SPICE subcircuit is referenced from Verilog, consider the
following SPICE subcircuit definition of an oscillator.

.SUBCKT ECPOSC (OUT GND)
VCC VCC GND 5
IEE E GND 1MA
Q1 VCC B1 E VCC VERTNPN
Q2 OUT B2 E OUT VERTNPN
L1 VCC OUT 1UH
C1 VCC OUT 1P IC=1
C2 OUT B1 272.7PF
C3 B1 GND 3NF
R1 B1 GND 10K
C4 B2 GND 3NF
R2 B2 GND 10K

.ENDS ECPOSC

This oscillator would be referenced from Verilog as follows:

module  osc (out, gnd);
electrical out, gnd;

ecpOsc Osc1 (out, gnd);
endmodule

Notice that in Verilog the name of the subcircuit instance is not constrained to start
X as it is in SPICE.

I.2.2.3 Accessing S PICE Primitives

To show how various SPICE primitives would be accessed from Verilog, the above
subcircuit is translated to native Verilog.

e

c2c1

b1 b2
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module  ecpOsc (out, gnd);
electrical out, gnd;

vsource #(.dc(5)) Vcc (vcc, gnd);
isource #(.dc(1m)) Iee (e, gnd);
vertnpnQ1 (vcc, b1, e, vcc);
vertnpnQ2 (out, b2, e, out);
inductor #(.l(1u)) L1 (vcc, out);
capacitor #(.c(1p), .ic(1)) C1 (vcc, out);
capacitor #(.c(272.7p)) C2 (out, b1);
capacitor #(.c(3n)) C3 (b1, gnd);
resistor #(.r(10k)) R1 (b1, gnd);
capacitor #(.c(3n)) C4 (b2, gnd);
resistor #(.r(10k)) R2 (b2, gnd);

endmodule

I.3 Preferred Primitive, Parameter, and Port Names

The following table gives required names for primitives, parameters, and ports tha
otherwise unnamed in SPICE. For connection by order instead of by name, the ports a

parameters must be given in the order listed. The discipline of the ports for these
primitives shall beelectrical  and their descriptions shall beinout .

Primitive Name Port Name Parameter Name

resistor p, n r, tc1, tc2

capacitor p, n c, ic

inductor p, n l, ic

vsource p, n see section I.3.1

isource sink, src see section I.3.1

diode* a, c area

bjt* c, b, e, s area

mosfet* d, g, s, b w, l, ad, as, pd, ps, nrd, nrs

jfet* d, g, s area

mesfet* d, g, s area

vcvs p, n, ps, ns gain

vccs sink, src, ps, ns gm

tline t1, b1, t2, b2 z0, td, f, nl
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* The names diode, bjt, jfet, and mosfet are never used from within Verilog because t
components require model. Thus the model name is used in Verilog, not the prim
name.

I.3.1 Independent Sources

The parameterization of independent source is more complicated than other compo
The sources have several different modes, which are selected by the string param
type. This parameter takes the name of a mode as its value. The parameters asso
with each mode are given in the following table.

Mode Name Description

all modes type Waveform type, possible values are “dc”,
“pulse”, “pwl”, “sine”, or “exp”.

mag, phase Small signal level and phase.

“dc” dc DC level.

“pulse” val0, val1 Pulse levels.

delay Start time of first pulse.

rise, fall Pulse rise and fall time.

width Pulse width.

period Pulse period.

“pwl” wave Vector of time/value pairs that define the
waveform.

“sine” dc DC level of sinusoid.

ampl Amplitude of sinusoid.

freq Frequency of sinusoid.

delay Start time of first pulse.

damp Damping factor of sinusoid.

sinephase Phase of sinusoid.

ammodindex AM index of modulation.

ammodfreq AM modulation frequency.

ammodphase AM modulation phase.

fmmodindex FM index of modulation.

fmmodfreq FM modulation frequency.
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To specify source parameters by order, only the parameter for one waveshape ca
given. The first parameter would be the type and the remaining parameters must be
in the order specified in the following table.

I.3.2 Unsupported Components

Verilog does not support the concept of passing an instance name as a paramete
such, the following components are not supported: ccvs, cccs, and mutual inducto
however, these primitives can be instantiated inside a subcircuit.

I.4 Other Issues

I.4.1 Multiplicity Factor on Subcircuits

Some SPICE simulators support a multiplicity factor or “M” factor parameter on
subcircuits without the parameter being explicitly being declared. This factor is typic
used to indicate that the subcircuit should be modeled as if there are a specified nu
of copies in parallel. If supported by the implementation, the automatic “M” factors
would be supported for subcircuits defined in SPICEbut not for subcircuits defined as a
modules in Verilog. Thus in the above examples, if the SPICE subcircuit of the
“Accessing Spice Subcircuits” section on page -3were instantiated a multiplicity fa
could be specified (assuming the simulator implementation supports multiplicity fac
on SPICE subcircuits. However, one could not specify a multiplicity factor when

“exp” val0, val1 Equilibrium levels.

td0, td1 Start time for transitions to val0, val1.

tau0, tau1 Time constant for transition to val0, val1.

all modes mag, phase Small signal level and phase.

Mode Parameter Order

dc “dc”, dc, mag, phase

pulse “pulse”, val0, val1, delay, rise, fall, width, period

pwl “pwl”, wave

sine “sine”, dc, ampl, freq, delay, damp

exp “exp”, val0, val1, td0, tau0, td1, tau1

Mode Name Description
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instantiating the equivalent Verilog module of the shown in "Accessing Spice
Primitives" (section I.2.2.3).

I.4.2 Binning and Libraries

Some SPICEnetlists provide mechanisms for mapping an instance to a group of mo
with the final determination of which model is used based on rules encapsulated i
SPICE netlist. Examples include model binning or corners support. From within an
instance statement it appears as if the instance is referencing a simple model, thu
supporting these capabilities in Verilog is provided by default.
Version 1.4 Verilog-AMS Language Reference Manual I-7



SPICE Compatibility
Version 1.4 Verilog-AMS Language Reference Manual I-8



Glossary

fic

ral
a

lso
r a

odule
ships
Annex J

Glossary

Glossary of Terms

B

behavioral description

A mathematical mapping of inputs to outputs for a module, including intermediate
variables and control flow.

behavioral model

A version of a module with a unique set of parameters designed to model a speci
component.

block

A level within the behavioral description of a module, delimited bybegin andend.

branch

A relationship between two nodes and their attached quantities within the behavio
description of a module. Each branch has two quantities, a value and a flow, with 
reference direction for each.

C

component

A fundamental unit within a system that encapsulates behavior and/or structure (a
known as an element). Modules and models might represent a single component, o
subcircuit with many components.

constitutive relationships

The essential relationships (expressions, statements) between the outputs of a m
and its inputs and parameters that define the nature of the module. These relation
constitute a behavioral description.
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control flow

The conditional and iterative statements controlling the behavior of a module. The
statements evaluate arbitrary variables, (counters, flags, and tokens), to control th
operation of different sections of a behavioral description.

child module

A module instantiated inside the behavioral description of another, “parent” modu
You must have a complete definition of the child module somewhere. A child modul
also known as submodule or instantiated module.

D

declaration

A definition of the properties of a variable or a node.

dynamic attributes

The characteristics of an expression whose value is derived from the evaluation o
derivative (thedot function). Dynamic expressions define time-dependent module
behavior. Some functions cannot operate on dynamic expressions.

E

element

A fundamental unit within the system that encapsulates behavior and/or structure
known as ancomponent).

F

flow

One of the two fundamental quantities used to simulate the behavior of a system.
electrical systems, flow is current.

G

global declarations

Declarations of variables and parameters at the beginning of a behavioral descrip
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instance

Any named occurrence of an element created from a module definition. One mod
definition can occur in multiple instances.

instantiation

The process of creating an instance from a module definition or simulator primitive,
defining the connectivity and parameters of that instance. (Placing the instance in
circuit or system.)

K

Kirchhoff’s Laws

Physical laws that define the interconnection relationships of nodes, branches, va
and flows. They specify a conservation of flow in and out of a node and a conserva
of value around a loop of branches.

L

level

One block within a behavioral description, delimited by a pair of matching keyword
such as begin-end, discipline-enddiscipline.

M

model

A named instance with a unique group of parameters specifying the behavior of o
particular version of a module. You can use models to instantiate elements with
parametric specifications different than those in the original module definition.

module

A definition of the interfaces and behavior of a component or a function.
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NR method

Newton-Raphson method. A generalized method for solving systems of nonlinear
algebraic equations by breaking them into a series of many small linear operation
ideally suited for computer processing.

node

A connection point in the system, with access functions for potential and/or flow thro
underlying discipline.

node declaration

The statement in a module definition, identifying the names of the nodes that are
associated with the module ports or are local to the module. A node declaration a
identifies the discipline of the node, which in turn identifies the access functions.

P

parameter

A variable for characterizing the behavior of an instance of a module. Parameters
defined in the first section of a module, the module interface declarations, and can
specified each time a module is called in a netlist instance statement.

parameter declaration

The statement in a module definition, which defines the instance parameters of th
module.

pin

An external connection point for a module (also known as aterminal).

potential

One of the two fundamental quantities used to simulate the behavior of a system.

primitive

A basic component that is defined entirely in terms of behavior, without reference to
other primitives. A primitive is the smallest and simplest possible portion of a simula
circuit or system.
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probe

An artificial branch introduced into a circuit (or system) that does not alter its behav
but lets the simulator to read out the potential or flow at that point.

R

reference direction

A convention for determining whether the value of a node, the flow through a bran
the value across a branch, or the flow in or out of a terminal, is positive or negativ

reference node

The global node (which equals zero value) against which all node values are meas
The reference node is ground in an electrical system.

run time binding

The conditional introduction and removal of value and flow sources during a simulat
A value source can replace a flow source and vice versa. Binding a source to a sp
node or branch prevents it from going into an unknown state.

S

scope

The current nesting level of a block statement, which includes all lines of code wit
one set of braces in a module definition.

structural definitions

Instantiating modules inside other modules through the use of module definitions 
declarations to create a hierarchical structure in the module’s behavioral descripti

T

terminal

An external connection point for a module (also known as apin or ananalog port).
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Verilog-A

A subset of Verilog-AMS detailing in the analog version of Verilog HDL (see Annex C
This is a language for behavioral description of continuous-time systems that use
syntax similar to Verilog HDL standard IEEE 1364-1995.

Verilog-AMS

Mixed-signal version of Verilog HDL. A language for behavioral description of
continuous-time and discrete-time systems that is based on Verilog HDL standard I
1364.
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Symbols
!

logical negation operator 4-1, 4-6
!=

logical inequality operator 4-1, 4-6
$dist_ functions F-2
$dist_chi_square F-2
$dist_erlang F-2
$dist_exponential F-2
$dist_normal F-2
$dist_poisson F-2
$dist_t F-2
$dist_uniform F-2
$fclose F-4
$finish F-3
$fopen F-4
$limexp 4-29
$random F-1
$realtime F-1
$stop F-3
$strobe

escape sequences F-5
format specifications F-5

$temperature F-1
$transition 4-20
$vt F-1
$vt(temp) F-1
%

in format specifications F-5
modulus operator 4-1

&
bit-wise AND operator 4-1

&&
logical AND operator 4-1, 4-6

*
arithmetic multiplication operator 4-1

,,
in null expressions F-5

/
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arithmetic division operator 4-1
<

relational less-than operator 4-1, 4-5
<+

branch contribution operator 5-10
<<

left shift operator 4-2, 4-7
<=

relational less-than-or-equal operator 4-1, 4-
==

logical equality operator 4-1, 4-6
>

relational greater-than operator 4-1, 4-5
>=

relational greater-than-or-equal operator 4-
4-5

>>
right shift operator 4-2, 4-7

?:
conditional operator 4-2

@ operator 6-9
\

for escape sequences in strings F-5
^

bit-wise exclusive OR operator 4-1
^~

bit-wise equivalence operator 4-2
`

in compiler directives G-1
`default_nodetype G-1
`define G-3, G-4
`else G-6
`endif G-6
`ifdef G-6
`include G-7
`resetall G-8
`timescale G-2
`undef G-6
|
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bit-wise inclusive OR operator 4-1
||

logical OR operator 4-1, 4-6
~

bit-wise negation operator 4-1
~^

bit-wise equivalence operator 4-2

A
absolute tolerance 4-14, 4-15, 4-24, A-4
abstol 3-8
AC Stimulus 4-32
Acceleration H-4
access 3-8
Access Functions 5-1, I-1
A-D converter 4-21
always procedural block 6-1
analog block 5-10
analog bus 3-14
analog operators 4-12

restrictions 4-12
analog procedural block 6-1
analysis dependent functions 4-30
analysis function 4-30
angle H-5
Angular_Acceleration H-5
Angular_Force H-5
Angular_Velocity H-5
arithmetic operators 4-1, 4-4

% 4-4
* 4-4
+ 4-4
/ 4-4

arrays
of integers 3-1
of time variables 3-1

associated reference directions 1-4

B
begin-end block statement 6-5
bidirectional port 8-9
binary operators 4-3

precedence 4-3
bit-wise operators 4-6–4-7

AND 4-1
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and 4-7
equivalence 4-2
exclusive nor 4-7
exclusive OR 4-1
exclusive or 4-7
inclusive OR 4-1
inclusive or 4-7
negation 4-1
unary negation 4-7

block statement
naming of 6-3

bound_step function 6-17
branch contribution operator 5-10
branch relations 5-11
Branches 3-20
branches 1-4
built-in primitives 1-5

C
calltf routines 24-49
case statement 6-5
cbAfterDelay 24-42
cbAssign 24-41
cbAtStartOfSimTime 24-42
cbDeassign 24-41
cbDisable 24-41
cbEndOfCompile 24-43, 24-47
cbEndOfRestart 24-43, 24-47
cbEndOfSave 24-43, 24-47
cbEndOfSimulation 24-43, 24-47
cbEnterInteractive 24-43, 24-47
cbError 24-43, 24-47
cbExitInteractive 24-43, 24-47
cbForce 24-41
cbInteractiveScopeChange 24-43, 24-47
cbNextSimTime 24-42
cbPLIError 24-43, 24-47
cbReadOnlySynch 24-42
cbReadWriteSynch 24-42
cbRelease 24-41
cbStartOfRestart 24-43, 24-47
cbStartOfSave 24-43, 24-47
cbStartOfSimulation 24-43, 24-47
cbStmt 24-41, 24-46
cbTchkViolation 24-43, 24-47
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cbUnresolvedSystf 24-43, 24-47
cbValueChange 24-41, 24-46
Charge H-1
circular integrator 4-15
classes of PLI routines

calltf 24-49
compiletf 24-49

comments 2-1
compatibility rules

discrete domain rule 3-18
domain incompatibility rule 3-18
empty discipline rule 3-18
flow compatibility rule 3-18
nature compatibility rule 3-18
nature incompatibility rule 3-18
node connection rule 3-18
potential compatibility rule 3-17
self rule 3-17
units value rule 3-18

Compiler directives 2-8
compiletf routines 24-49
concatenation

of names 8-15
conditional compilation G-6
conditional operator 4-2, 4-8
conditional operator ?: 4-3
conditional statement 6-4
Connecting module ports by name 8-11
Connecting module ports by ordered list 8-11
connecting ports

by name 8-11
rules 8-12

conservative branch 3-20
conservative disciplines 3-12
conservative nodes 3-12
constant expression 4-1
constitutive relationships 1-5, A-1
contribution statements 6-2
convergence A-3
Correlated noise 4-33
cross function 6-13
Current H-1
current H-2
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D
ddt operator 4-14
ddt_nature 3-8
decimal notation 2-3
default

in case statement 6-6
Defining a function 4-34
defparam 3-4, 8-5–8-6
defparam statement 8-5
delay operator 4-17
delays

inertial 24-38
pure transport 24-38
transport 24-38

diagnostic messages
from $stop and $finish F-3

discipline 3-11
disciplines

conservative 3-12
empty 3-13
signal-flow 3-12

discontinuity 6-15
discrete-time finite difference approximation A-2
Domain Binding 3-12
driver_active function 7-22
driver_count function 7-22
driver_delay function 7-24
driver_local function 7-23
driver_next_state function 7-25
driver_next_strength function 7-25
driver_state function 7-23
driver_strength function 7-24

E
electrical H-2
else statement 6-4
embedding modules 8-1, 8-3
empty disciplines 3-13
end

sequential block 6-2
endcase 6-6
enddiscipline 3-11
endfunction 4-34
endmodule 8-2
equality operators
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!= 4-6
== 4-6
precedence 4-6

escape sequences F-4, F-5
escaped identifiers 2-5
event

OR construct 6-10
event or 4-2
event or operator 4-8
events

global 6-10
monitored 6-10

exit simulator F-3
exponentiation 4-10
expression

evaluation order 4-4
expressions 4-11

constant 4-1

F
file inclusion G-7
filters 4-12
final_step 6-11
finite-difference approximation A-2
flicker_noise 4-33
floating-point literals 2-4
flow 1-6
flow probe 5-3
flow source 5-2
Flux H-2
for loop 6-8
Force H-4
format specifications F-5

ASCII character F-6
b or B F-5
binary F-5
c or C F-6
d or D F-5
decimal F-5
h or H F-5
hexadecimal F-5
hierarchical name F-6
m or M F-6
o or O F-5
octal F-5
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s or S F-6
string F-6

fullname 24-26
function 4-34
functions

call 4-36
definition 4-34
distribution F-2
probability F-2
returning a value 4-35

G
generate statement C-5
global events 6-10
ground 1-4, 5-1

H
handles

vpiHandle data type 22-2
hierarchical path name 8-14
hierarchy

level 8-15
name referencing 8-14, F-6
scope 8-15
scope rules for naming 8-16
top level names 8-15

hyperbolic functions 4-10

I
ideal opamp 5-13
identifiers 2-5

escaped 2-5
keywords 2-6

idt operator 4-14
idt_nature 3-8
idtmod 4-15
if-else statement 6-4

omitting else from nested if 6-5
implicit declarations G-1
implicit equations 5-5
implicit nodes 3-15
Impulse H-4
indirect branch assignement 5-13
inertial delays 24-38
initial procedural block 6-1
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initial_step 6-11
inout port 8-9
input port 8-9
instantiation

of modules 8-1
instantiation of modules 8-2
integer 3-1
integers

division 4-4
interconnection relationships 1-5

J
junction diode 5-6

K
keywords 2-6
kinematic H-4
kinematic_v H-5
Kirchhoff’s Flow Law 1-5, A-1, A-4
Kirchhoff’s laws 1-5, A-1
Kirchhoff’s Value Law 1-5

L
Laplace transform filters 4-23
laplace_nd 4-25
laplace_np 4-25
laplace_zd 4-24
laplace_zp 4-24
last_crossing function 4-23
left shift operator 4-2, 4-7
lexical token

comment 2-1
definition of 2-1
number 2-2
operator 2-2
types 2-1
white space 2-1

limited exponential 4-29
logical operators 4-6

! 4-6
&& 4-6
|| 4-6
AND 4-1
equality 4-1
inequality 4-1
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negation 4-1
OR 4-1
precedence 4-6

looping statement
for loop 6-8
repeat loop 6-7
while loop 6-7

M
M_1_PI H-7
M_2_PI H-7
M_2_SQRTPI H-7
M_E H-7
M_LN10 H-7
M_LN2 H-7
M_LOG10E H-7
M_LOG2E H-7
M_PI H-7
M_PI_2 H-7
M_PI_4 H-7
M_SQRT1_2 H-7
M_SQRT2 H-7
M_TWO_PI H-7
magnetic H-3
Magneto_Motive_Force H-2
mathematical function 4-9
mathematical functions 4-9
minus sign(-)

arithmetic subtraction operator 4-1
module 8-1

definition 8-1
instance parameter value assignment 8-6
instantiation 8-2
overriding parameter values 8-5–8-8
parameter dependencies 8-8
port 8-3
terminal 8-4
top-level 8-2

module parameter
dependencies 8-8
overriding values 8-5–8-8

modulus operator 4-1
definition 4-4

mtm_flag 24-12, 24-35
multi-channel descriptor F-4
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multi-way decisions
case statement 6-5
if-else-if statement 6-5

N
name 24-26
named blocks

and scope 8-16
purpose 6-3

names
of hierarchical paths 8-14

new line character F-5
Newton-Raphson method A-3
nodal analysis A-1
node 3-6

in hierarchical name tree 8-15
nodes 1-6, 3-15
noise 4-32
noise_table 4-33
null

expression F-5
numbers 2-2

O
operator

circular integrator 4-15
idtmod 4-15

operators 4-1–4-8
- 4-1
! 4-1, 4-6
!= 4-1, 4-6
% 4-1
& 4-1
&& 4-1, 4-6
* 4-1
+ 4-1
/ 4-1
< 4-1, 4-5
<< 4-2, 4-7
<= 4-1, 4-5
== 4-1, 4-6
> 4-1, 4-5
>= 4-1, 4-5
>> 4-2, 4-7
?: 4-2
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^ 4-1
^~ 4-2
{{}} 4-1
{} 4-1
| 4-1
|| 4-1, 4-6
~ 4-1
~^ 4-2
analog 4-12
arithmetic 4-1, 4-4
binary 2-2, 4-3
bit-wise 4-6–4-7
bit-wise AND 4-1
bit-wise equivalence 4-2
bit-wise exclusive OR 4-1
bit-wise inclusive OR 4-1
bit-wise negation 4-1
concatenation 4-1
conditional 2-2, 4-2, 4-8
definition 2-2
event or 4-2
left shift 4-2
left shift operator 4-7
logical 4-6
logical AND 4-1
logical equality 4-1
logical inequality 4-1
logical negation 4-1
logical OR 4-1
modulus 4-1
power 4-10
relational 4-1, 4-5
replication 4-1
right shift 4-2
right shift operator 4-7
shift 4-7
time derivative 4-14
time integral 4-14
unary 2-2

output port 8-9
overriding module parameter values 8-5–8-8

by name 8-7
defparam 8-5
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P
P_C H-7
P_CELSIUS0 H-7
P_EPS0 H-7
P_H H-7
P_K H-7
P_Q H-7
P_U0 H-7
parameter

module type 3-2
parameter assignment by name 8-5
parameter assignment by order 8-5
parentheses

and changing operator precedence 4-4
plus sign(+)

arithmetic addition operator 4-1
port 8-8–8-14

connecting by name 8-11
declaration 8-9
definition 8-8
module 8-3
rules for connecting 8-12

port access function 4-11
Port Branches 5-6
Position H-3
potential probe 5-3
potential source 5-2
pow operator 4-10
precedence

binary operators 4-3
equality operators 4-6
logical operators 4-6
relational operators 4-5

primitives J-4
probabilistic distribution functions F-3

$dist_chi_square F-2
$dist_erlang F-2
$dist_exponential F-2
$dist_normal F-2
$dist_poisson F-2
$dist_t F-2
$dist_uniform F-2
gaussian distribution F-3

probe 5-3
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Probes 5-3, I-2
pulse control 24-12, 24-35
pulsere_flag 24-12, 24-35
pure transport delays 24-38

Q
QAM modulator 4-21
quantities A-4

R
real numbers 3-1–3-2

format specifications used with F-6
operators with real number operands 4-2

reference direction 1-4
reference node 1-4, 5-1
relational operators 4-1, 4-5

< 4-5
<= 4-5
> 4-5
>= 4-5
precedence 4-5

relative tolerance A-4
repeat loop 6-7
right shift operator 4-2, 4-7
rotational H-6
rotational_omega H-6

S
s

in string display format F-6
s_cb_data structure 24-8, 24-40, 24-45
s_vpi_delay structure 24-11
s_vpi_error_info structure 24-2
s_vpi_strengthval structure 24-18
s_vpi_systf_data structure 24-15, 24-48
s_vpi_time structure 24-11, 24-16, 24-39
s_vpi_value structure 24-18, 24-39
s_vpi_vecval structure 24-18
s_vpi_vlog_info structure 24-22
scalar node 3-14
scientific notation 2-3
scope

and hierarchical names 8-15
rules 8-16

seed F-2
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shift operators 4-7
<< 4-7
>> 4-7

signal access functions 4-11
signal transitions 4-18
signal-flow branch 3-20
signal-flow disciplines 3-12
signal-flow nodes 3-12
sinusoidal voltage source 6-17
slew filter 4-22
slope 4-22
source branch 5-2
Sources 5-2
standard mathematical functions 4-9
standard output F-4
stochastic analysis F-3

probabilistic distribution functions F-3
stop F-3
strings

display format F-6
switch branch 5-2
system tasks

for interrupting the simulator F-3
System tasks and functions 2-7

T
Temperature H-3
terminals 1-4
text macro substitutions G-4–G-6

and `define G-4
definition G-4
redefinition G-6
with arguments G-4

text output
vpi_mcd_close() 24-29
vpi_mcd_name() 24-30
vpi_mcd_open() 24-31
vpi_mcd_printf() 24-32
vpi_printf() 24-33

thermal H-3
time derivative operator 4-14, A-2
time integral operator 4-14
time precision G-2
time unit G-2
timer function 6-15
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Tolerances 4-13
top-level module 8-2
transient analysis A-2
transition 4-18
transition filter 4-18
transition function 4-20
transport delays 24-38
tree structure

of hierarchical names 8-14
trigonometric functions 4-10
type specification

parameter 3-4

U
unary operators

! 4-6
<< 4-7
>> 4-7

undescore character 2-3
units 3-8
User Defined Attributes 3-10
User defined functions 4-34

V
value 1-4
value range specification

parameter 3-5
vector branch 3-20
vector node 3-14
Velocity H-4
vlog_startup_routines array 24-49
Voltage H-2
VPI object diagrams

assignments 22-32
case statement 22-34
continuous assignments 22-27
delay controls 22-32
event controls 22-32
expressions 22-28, 22-29, 22-30
for loops 22-33
forever loops 22-33
function calls 22-26
functions 22-14
if statement 22-34
inter-module paths 22-25
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IO declarations 22-14
memories 22-21
module paths 22-25
modules 22-11, 22-12
named events 22-20, 22-31
nets 22-18
parameters 22-22
ports 22-15, 22-16, 22-17
primitives 22-23
procedural assign statement 22-35
procedural blocks 22-31
procedural deassign statement 22-35
procedural disable statement 22-35
procedural force statement 22-35
procedural release statement 22-35
processes 22-31
regs 22-19
repeat controls 22-32
repeat loops 22-33
scopes 22-14
specparams 22-22
statements 22-31
task calls 22-26
tasks 22-14
timing checks 22-25
UDPs 22-24
variables 22-20
wait control 22-33
while loops 22-33

VPI routines
callback overview 22-1
error handling 22-2
key to object diagrams 22-7
object access overview 22-2
object classifications 22-2

vpi_chk_error() 24-2
vpi_compare_objects() 24-3
vpi_free_object() 24-5
vpi_get() 24-7
vpi_get_cb_info() 24-8
vpi_get_str() 24-14
vpi_get_systf_info() 24-15
vpi_get_time() 24-16
vpi_get_value() 24-17
vpi_get_vlog_info() 24-22
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vpi_handle() 24-24
vpi_handle_by_index() 24-25
vpi_handle_by_name() 24-26
vpi_handle_multi() 24-27
vpi_iterate() 24-28
vpi_mcd_close() 24-29
vpi_mcd_name() 24-30
vpi_mcd_open() 24-31
vpi_mcd_printf() 24-32
vpi_printf() 24-33
vpi_put_delays() 24-34
vpi_put_value() 24-38
vpi_register_cb() 24-40, 24-45
vpi_register_systf() 24-45
vpi_remove_cb() 24-51
vpi_scan() 24-52
vpiCancelEvent 24-38
vpiForceFlag 24-38
vpiHandle 22-2
vpiInertialDelay 24-38
vpiInterModPath 24-27
vpiIntFunc 24-49
vpiIterator 24-28
vpiNoDelay 24-38
vpiPureTransportDelay 24-38
vpiRealFunc 24-49
vpiReleaseFlag 24-38
vpiReturnEvent 24-38
vpiScaledRealTime 24-39
vpiSchedEvent 24-38
vpiScheduled 24-38
vpiSizedFunc 24-49
vpiSysFunction 24-48, 24-49
vpiSysTask 24-48
vpiTimeFunc 24-49
vpiTimeUnit 24-7
vpiTransportDelay 24-38

W
Watts H-3
while loop 6-7
white space 2-1
white_noise 4-32
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Z
zi_nd 4-28
zi_np 4-28
zi_zd 4-27
zi_zp 4-27
Z-transform filters 4-26
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